

Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement.

G-Resources Group Limited 國際資源集團有限公司* (Incorporated in Bermuda with limited liability) (Stock Code: 1051)

ANNOUNCEMENT

MARTABE – EXPLORATION UPDATE

Hong Kong, 2 November 2015

G-Resources Group Limited (HKSE: 1051 – "G-Resources" or the "Company") is pleased to update the market with recent exploration results at G-Resources' Martabe gold and silver mine in Indonesia.

HIGHLIGHTS

G-Resources continues its successful exploration programme at the Martabe gold and silver mine in North Sumatra. Recent work has focused on expanding the Mineral Resource Estimates at Martabe, and on regional exploration targets on the Contract of Work ("CoW"). Drilling has been conducted on extensions to known Resources at the Ramba Joring and Tor Uluala deposits.

The key results from exploration work are:

- New Mineral Resource Estimates at Ramba Joring and Tor Uluala are in progress.
- Best results from the recent drilling to support the new estimates include:
 - 45.5 metres @ 3.45 g/t gold, 49 g/t silver (from additional drilling at the Ramba Joring Deposit).
 - 19.8 metres @ 2.13 g/t gold (from additional drilling at the Tor Uluala Deposit).
- High grade intersections at Horas West and Purnama are being targeted for a high grade refractory gold potential. Previously unreported, high grade results from Horas include:
 - 4.5 metres @ 110.90 g/t gold, 19 g/t silver.
 - 2.0 metres @ 10.70 g/t gold, 2 g/t silver

- Regional exploration is ongoing at the Tani Hill, Golf Mike and Rantau Panjang areas.
- Surface exploration at Golf Mike 15 km south of the Martabe Mine has located previously unrecognized chalcopyrite within silica – actinolite – magnetite – tourmaline - biotite altered rocks, this is potentially indicative of porphyry copper-gold mineralisation.

Geologist Ms. Aya Asaga logging drill core in the exploration core shed. All drill core is logged for geological and technical purposes, photographed, and cut into half or quarter by diamond rock saw. The half core is stored for further use in geological and mining studies. Almost all the core drilled since the first hole at Martabe is still available in storage.

RAMBA JORING RESOURCE UPGRADE AND EXTENSION

Ramba Joring has been drilled for extensions of the known deposit both within and outside the current Ore Reserve pit shell. This recent work aimed to both increase the Mineral Resource and improve the Ore Reserve economics by defining additional mineralisation in material that was previously sub-economic, and by adding additional mineralised zones to the deposit. This work is the precursor to a revised Mineral Resource Estimate to be completed by the end of 2015, which may then be used for a revised Ore Reserve Estimate.

The program of drilling and trenching work commenced at Ramba Joring in early 2015. The field program was finished in July 2015, and results have been received from all trenches and diamond drill holes. The first 14 holes were reported on the 29 July 2015, and the final 11 holes are reported here.

The best results received since the 29 July 2015 release were:

- APSD1556: 90.1 metres @ 1.32 g/t gold, 3 g/t silver from 20.0 metres;
- APSD1557: 33.5 metres @ 3.45 g/t gold, 49 g/t silver from 45.5 metres;
- APSD1558: 15.2 metres @ 5.68 g/t gold, 4 g/t silver from 21.7 metres.

A complete list of the drill hole and trench locations and significant results is provided in Appendix 1, Table A1. Figure 3 shows the location of the holes in plan view, and Figure 4 shows a selected section.

A consulting group has been engaged to complete an updated Mineral Resource Estimate and work is well advance, with the resource statement expected to be released in late 2015.

TOR ULUALA RESOURCE UPGRADE AND EXTENSION

As previously reported, a program of drilling and trenching at Tor Uluala was targeted to increase both the average grade and/or the total metal content. Results were previously reported on 29 July 2015. All remaining results have been now been received, with the best results for this drilling being:

- APSD1559: 24.8 metres @ 1.37 g/t gold, 1 g/t silver from 42.2 metres;
- APSD1564: 19.8 metres @ 2.13 g/t gold, 3 g/t silver from 119.0 metres.

A complete list of the drill hole locations and significant results is provided in Appendix 1, Table A2. Figure 3 shows the location of the holes, and Figure 5 shows selected sections.

The Martabe exploration team is currently constructing wireframes of geological interpretations, in preparation for a consulting group to complete an updated Mineral Resource estimate. It is anticipated this will be released in late 2015.

Core shed technician Mr. Komaruddin Hasibuan photographed sampling diamond drill core with an automated cutting machine. The machine was purchased under a "Martabe Improvement Program" project, and provides advantages in improved operator safety, faster cutting speed, better sampling workflow and decreased consumable use over conventional cutters.

MARTABE SULPHIDE PROJECT TEST WORK AND HIGH GRADE SULPHIDE TARGETS

Metallurgical test work has continued on the refractory "sulphide" components of the Martabe deposits. The test work has consisted of detailed floatation work, comminution testwork, bond work index calculations and also advanced metallurgical techniques such as Mineral Liberation Analysis of floatation concentrate and tails.

The results of the recent work confirm and refine the previous test work reported in October 2014. To advance the project an external consultant has been contracted to provide high level economic studies. These are currently in progress.

There are currently two operating scenarios being evaluated:

- A high tonnage bulk mining operation. This has been the focus of test work and exploration to date.
- Selective mining of high grade refractory mineralisation, potentially from open pit and/or underground operations. This type of mineralisation has not previously been subjected to a focused exploration program.

The exploration group is currently focusing on the second scenario, and has identified two major high grade sulphide targets. These are the Purnama northern high grade zone and the Horas high grade zones, as described below.

Purnama Northern High Grade Zone

High grade mineralisation occurs in the north of the deposit, beneath and to the north of the current Purnama Reserve Pit Limit. Figure 6 shows an example of the distribution of this mineralisation on section. This mineralisation is currently defined in the block model as Indicated and Inferred Resource. Additional diamond drilling is planned for 2016 to test this zone at depth.

Horas West High Grade Targets

The Horas deposit is located approximately 3 km south east of the Purnama Pit and Martabe process plant, south of the Barani deposit. Drilling in 2011 discovered a high grade zone in the west, referred to as the Horas Barat prospect. This drilling was reported on 6

October 2011, 17 January 2012 and 29 June 2012.

Highlights of this previously reported drilling were:

- APSD1117: 9.5 metres @ 7.1 g/t gold, 42 g/t silver from 209.0 metres;
- APSD1123: 45.0 metres @ 1.55 g/t gold, 8 g/t silver from 13.0 metres;
- APSD1126: 18.0 metres @ 6.66 g/t gold, 11 g/t silver from 146.0 metres (including 4.0 metres @ 24.25 g/t gold from 156.0 metres);
- APSD1161: 19.7 metres @ 2.96 g/t gold, 5 g/t silver from 145.3 metres (Including 1.2 metres at 29.1 g/t gold from 162.5 metres).

Additional drilling has been completed since these programs which has not yet been reported. Best results for this drilling were:

- APSD1179: 25.0 metres @ 2.25 g/t gold, 3 g/t silver from 2.0 metres:
- APSD1182: 25.8 metres @ 1.31 g/t gold, 2 g/t silver from 4.2 metres;
- APSD1182: 4.5 metres @ 110.9 g/t gold, 19 g/t silver from 206.7 metres;
- APSD1191: 12.6 metres @ 1.51 g/t gold, 0 g/t silver from 4.0 metres;
- APSD1191: 52.4 metres @ 1.24 g/t gold, 1 g/t silver from 19.6 metres;
- APSD1194: 2.0 metres @ 10.70 g/t gold, 2 g/t silver from 117.0 metres.

The results from previously unreported drilling at Horas West provided in Table A3 in Appendix 1. Some of the better results are shown on section in Figure 7. The results of this drilling show the potential for narrow, bonanza grade gold zones over a 900 metre strike length, which is open to south and at depth.

These high grade results do not form part of the current Horas Mineral Resource estimate as they were drilled after this estimate was completed. The next planned drilling program will firstly test the potential of the high grade zones, and if appropriate, a second stage of infill drilling will be completed to bring the additional gold mineralisation into an updated Mineral Resource estimate.

REGIONAL EXPLORATION

Exploration work is continuing over the prospective, 1,639 km² CoW. Over the past twelve months the exploration team has developed a new conceptual exploration model and is applying recently available geochemical and geophysical methods in the search for buried porphyry copper and epithermal gold deposits. To assist in the development and implementation of the program, world class consultants have been used to enhance the group's capabilities and additional, highly experienced field geologists have been employed to re-map and sample poorly investigated areas.

Broad scale, very low detection limit geochemical sampling is underway across the CoW. This program has enjoyed some recent success with new porphyry style targets identified at the Tani Hill and Golf Mike areas, peripheral to areas of previous work. While sampling and mapping is continuing, the exploration group is sourcing advanced geophysical equipment which will have the capability to search to 1 km depth using surface Audio-magnetotellurics (AMT) and deep penetration Induced Polarization (IP) methods. These techniques are finding increasing success in the search for buried porphyry systems worldwide.

This new methodology, and encouragement from recent field mapping and rock sampling, have provided a new focus to the search for large scale, buried porphyry copper-gold systems. Targets are being generated by these methods, and focused mapping based on the geochemistry has discovered chalcopyrite bearing, quartz-magnetite-actinolite (\pm tourmaline \pm biotite) alteration systems in the Golf Mike and Tani Hill areas. These are typical assemblages associated with porphyry copper gold systems.

More detail on the recent prospect scale work is provided below.

Golf Mike

Golf Mike is located approximately 15 km south of Martabe, shown on Figure 2. Previous work focused on exploration for near surface gold-silver targets. This work is described in the G-Resources release dated 29 June 2012. The best result from drilling in the area was 9.7 metres @ 0.96 g/t gold, however this mineralisation is not economically significant in its own right. Exploration for near surface gold was halted, and a porphyry copper target was tested at depth under the gold system without success.

In the past six months, a low detection limit soil sampling program commenced to the north of the previous work area on a 500 metre grid spacing. Approximately 2 km north of the previous drilling a significant copper-gold-molybdenum anomaly was located. This was followed up with field mapping; subsequently a chalcopyrite bearing alteration system was identified. The system consists of several alteration phases within volcanic diorites and sandstones, including:

- structurally controlled tourmaline hydrothermal breccias within the diorite and sandstone;
- a pervasive sericite alteration in the sandstone where it overlies the diorite on the tops of ridges, and;
- on a scale of tens of metres in outcrop, the diorite is altered to silica-magnetitefeldspar-actinolite-tourmaline-biotite with chalcopyrite occurring within quartz veins and as disseminations.

89 rock outcrop and float samples were taken during mapping. Float samples are taken from a restricted drainage basin and have not traveled far from their source. Of these samples, 8 samples returned values above 0.1% copper with the highest value being 0.6% copper. Gold results were anomalous in the range 0.1-0.15 g/t in the high copper samples.

These results are interpreted as potentially indicative of a buried porphyry style system. The depth of such a system, if it exists, is unknown, and the previously described program of deep penetration surface geophysics is planned to located targets at depth. A geophysics signature of high potassium radiometric signal, magnetics and near surface resistivity indicates potential for additional targets further to the north. While the surface geophysics program is in preparation, the low detection limit geochemical sampling program is being extended further northwards.

Vein hosted and disseminated chalcopyrite (here allowed to oxidize after cutting to green malachite, for better visibility within this photograph). The host rock is altered diorite. Cross cutting veins are composed of quartz-magnetite-pyrite-chalcopyrite. The width of this photograph is approximately 8 cm.

Photograph showing stockwork quartz-magnetite veins which cross-cut brown biotite alteration in diorite host rock. Graduations on the scale are in millimetres.

Tani Hill

Tani Hill is located in the Gambir Kapur District approximately 25 km south of Martabe, shown on Figure 2. As previously reported on 29 July 2015, several phases of drilling have been completed in the search for a large scale, buried porphyry copper-gold style system. The latest drill program consisted of three holes, at approximately 500 metre spacing to a maximum depths of 550 metres. To date best the results have been several zones of elevated copper geochemistry up to 10 metres wide, with individual samples peaking at 0.15% copper over 2 metre sample widths.

Alteration consisting of silica-magnetite-pyrite-actinolite-chlorite is widespread over a 2-3 km strike length and down the drill holes. Locally feldspar and minor biotite alteration is present. Minor chalcopyrite is associated with quartz magnetite vein sets. Despite the widespread alteration a source has not been found, and if there is an economically viable source it may be located at some distance to the completed drilling. To progress this project and locate a possible source, a deep penetrating surface geophysics program is planned to commence in 2016.

Rantau Panjang

A helicopter borne electromagnetic and magnetometer survey was completed at the Rantau Panjang Prospect, approximately 80 km south of Martabe. This is the first major exploration program to be undertaken in this area since it was recognized by previous operators in 1997-98. The data is currently being processed by the equipment operator and will be interpreted by a consultant geophysicist.

Ĝ

The heli-borne Electromagnetic survey in operation at the Rantau Panjang area.

COMPETENT PERSON STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on information compiled by Mr. Shawn Crispin, a Competent Person who is a Member and Chartered Professional of the Australasian Institute of Mining and Metallurgy. Mr. Crispin is a full time employee of G-Resources.

Mr. Crispin has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Crispin consents to the inclusion of the matters based on his information in the form and context in which it appears.

G-Resources issues all public results under the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code 2012 Edition)". The Code requires reporting across most of the operational aspects of the exploration programme. The reporting requirements are specified in Table 1 of the Code and provided in Appendix 2 attached to this report.

ABOUT MARTABE

The Martabe mine is located on the western side of the Indonesian island of Sumatra in the Province of North Sumatra, in the Batangtoru sub-district (Figure 1). Martabe is established under a sixth generation CoW signed in April 1997. The CoW defines all of the terms, conditions and obligations of both G-Resources and the Government of Indonesia for the life of the CoW.

Martabe Mine Aerial view.

Martabe, with a resource base of 7.4 million ounces of gold and 70 million ounces of silver, is G-Resources Group's core asset. Martabe's operating capacity is to mine and mill the equivalent of 4.5 mtpa ore to produce some 250,000 ounces gold and 2 million ounces silver per annum. Costs are competitive when compared to global gold producers.

G-Resources is seeking to organically grow gold production through continued exploration success on the large and highly prospective CoW area (Figure 2). The Martabe mine enjoys the strong support of the Indonesian Central, Provincial and Local Governments and the nearby communities of Batangtoru.

By Order of the Board G-Resources Group Limited Chiu Tao Chairman and Acting Chief Executive Officer

Hong Kong, 2 November 2015

As at the date of this announcement, the Board comprises:

- (i) Mr. Chiu Tao, Mr. Owen L Hegarty, Mr. Ma Xiao, Mr. Wah Wang Kei, Jackie and Mr. Hui Richard Rui as executive directors of the Company; and
- (ii) Mr. Or Ching Fai, Ms. Ma Yin Fan and Mr. Leung Hoi Ying as independent non-executive directors of the Company.

For media or investor enquiries please contact:

Hong Kong:	Melbourne, Australia		
Mr. Richard Hui	Mr. Owen Hegarty		
T. +852 3610 6700	T. +61 3 8644 1330		
Ms. Joanna Ip	Ms. Amy Liu		
T. +852 3610 6700	T. +61 3 8644 1330		

* For identification purpose only

Figure 1: Martabe Mine Location.

Figure 2: Martabe CoW.

Figure 3: Plan location of prospects, recent drill holes and cross sections referred to in this report.

Figure 4: Cross section showing results of Ramba Joring Drilling.

Figure 5: Cross sections showing selected results of Tor Uluala Drilling.

Figure 6: Cross Section through high grade zone under the current Purnama Open Pit Design.

Figure 7: Cross sections showing selected results of Horas West Drilling.

Appendix 1: Drill hole information

This appendix provides drill hole information relevant to the contents of this report. Drill holes are reported as follows:

- The grid system employed is UTM (WGS84) Zone 47N.
- Significant intersections are calculated with a 0.5 g/t gold cut over a maximum of 2 metres of contiguous internal waste. One significant intersection may contain multiple intersections of internal waste.
- All intersections are down hole and may not necessarily be true widths.
- Note: NA = Final certified laboratory assay not yet available

Table A1. Ramba Joring Diamond Drilling Locations and Results

Hole Number	Easting (m)	Northing (m)	RL (m)	Final depth (m)	Azimuth (in degrees)	Inclination (in degrees from horizontal)
APSD1550	507467	168870	548	185.1	315	-42
APSD1553	507591	168662	616	169.1	300	-40
APSD1555	507092	168668	469	99.7	315	-22
APSD1556	507096	168682	477	122.1	315	-47
APSD1557	507313	168450	587	138.2	315	-15
APSD1558	507436	168752	542	105.1	135	-45
APSD1561	507396	168705	571	81.4	145	-55
APSD1562	507758	168831	642	101.5	315	-46
APSD1563	507174	168152	465	105	315	-50
APSD1566	507444	168607	625	52.8	305	-15
APSD1567	507496	168900	571	100	315	-35

Ramba Joring Collar Locations

Hole Number	From depth (m)	To depth (m)	Interval (m)	Au_g/t	Ag_g/t
APSD1550	16.6	18.6	2	1.72	7
APSD1550	52	61	9	0.71	4
APSD1550	69	71	2	1.23	25
APSD1550	77	79	2	0.86	5
APSD1550	82	90	8	0.76	3
APSD1550	113.5	122.9	9.4	1.16	2
APSD1550	126.8	139	12.2	2.14	8
APSD1550	142	144	2	1.11	5
APSD1550	170	173	3	0.64	2
APSD1553	0	169.1	169.1	No Significant As	say Intercept
APSD1555	22	58.6	36.6	1.7	7
APSD1555	63.7	74	10.3	1.06	3
APSD1555	82	85	3	0.55	2
APSD1555	92.5	98.5	6	0.56	1
APSD1556	10	14	4	0.59	7
APSD1556	20	110.1	90.1	1.32	3
APSD1556	114.6	117	2.4	0.87	7
APSD1557	45.5	79	33.5	3.45	49
APSD1557	82.1	102	19.9	2.1	13
APSD1557	112.6	117.8	5.2	0.76	5
APSD1558	7.7	18.2	10.5	2.44	3
APSD1558	21.7	36.9	15.2	5.68	4
APSD1561	0	81.4	81.4	No Significant As	say Intercept
APSD1562	49	58.5	9.5	1.24	0
APSD1562	84	89.5	5.5	0.58	1
APSD1563	29	40	11	1.25	15
APSD1566	0	52.8	52.8	No Significant As	say Intercept
APSD1567	61	68	7	0.81	1

Ramba Joring Drill hole Assay Intercepts

Table A2: Tor Uluala Diamond Drilling Locations and Intercepts

Hole Number	Easting (m)	Northing (m)	RL (m)	Final depth (m)	Azimuth (in degrees)	Inclination (in degrees from horizontal)
APSD1551	507303	169853	801	72.5	95	0
APSD1552	507561	169954	789	82.8	95	-24.5
APSD1554	507289	169819	794	169.2	95	-5
APSD1559	507138	169352	717	139.5	280	-30
APSD1560	507290	169748	799	119.4	90	-21
APSD1564	507371	169855	839	147.4	90	-35.5
APSD1565	507333	169254	625	260.7	275	-10
APSD1568	507451	169725	739	88.3	270	-24.5
APSD1569	507296	169000	50	148.1	90	-10
APSD1570	507296	169000	502	157.2	90	-30
APSD1571	507278	168951	474	116.5	90	-5

Tor Uluala Collar Locations

Tor Uluala Drill hole Assay Intercepts

Hole Number	From depth (m)	To depth (m)	Interval (m)	Au_g/t	Ag_g/t
APSD1551	0	72.5	72.5	No Significant a	ssay intercept
APSD1552	25.7	28.7	3	1.07	2
APSD1552	34.5	37.5	3	0.96	1
APSD1552	44.3	53.1	8.8	1.09	1
APSD1552	60	64.7	4.7	0.81	1
APSD1552	70.1	74.3	4.2	0.72	1
APSD1554	25.6	30.2	4.6	0.89	0
APSD1554	59.1	73.4	14.3	0.93	2
APSD1554	75.8	92.1	16.3	1.67	6
APSD1554	103.4	105.4	2	0.68	3
APSD1554	114.4	118.7	4.3	1.73	1
APSD1554	124.2	126.6	2.4	0.52	1
APSD1554	130	133	3	0.57	1
APSD1554	144.2	148	3.8	3.87	1
APSD1554	160	169.2	9.2	2.22	1
APSD1559	0	9	9	0.65	0
APSD1559	42.2	67	24.8	1.37	1
APSD1560	10.7	20.6	9.9	1.18	0

Hole Number	From depth (m)	To depth (m)	Interval (m)	Au_g/t	Ag_g/t
APSD1560	49.3	54	4.7	0.64	1
APSD1560	56.2	58.2	2	0.5	1
APSD1560	68.8	70.8	2	0.58	1
APSD1564	57.1	59.2	2.1	0.73	0
APSD1564	61.3	65.5	4.2	1.22	0
APSD1564	94.5	97.5	3	1.04	1
APSD1564	112.5	116.8	4.3	1.32	3
APSD1564	119	138.8	19.8	2.13	3
APSD1564	141.8	143.8	2	0.99	2
APSD1565	0	9.2	9.2	0.87	NA
APSD1565	15.2	35.7	20.5	1.04	NA
APSD1565	39.7	46.7	7	2.16	NA
APSD1565	50.7	81	30.3	0.64	NA
APSD1565	89	122.7	33.7	1.36	NA
APSD1565	135.9	138.4	2.5	1.06	NA
APSD1565	205	214.5	9.5	1.02	NA
APSD1565	230	236	6	0.69	NA
APSD1568	25	30.9	5.9	1.43	1
APSD1568	58.6	60.6	2	2.5	2
APSD1569	2	4.5	2.5	1.2	5
APSD1569	23.6	25.6	2	0.66	3
APSD1569	53.4	61	7.6	0.64	12
APSD1569	80	84	4	0.65	27
APSD1569	86.4	101	14.6	0.82	7
APSD1570	30.6	34.6	4	0.67	10
APSD1570	38.6	42	3.4	0.56	6
APSD1570	58.2	63	4.8	0.51	7
APSD1570	66	69	3	2.14	7
APSD1570	73	75	2	0.71	10
APSD1570	80	90	10	0.55	18
APSD1570	126.7	129	2.3	1.09	5
APSD1571	8.5	10.5	2	0.69	1
APSD1571	27.4	39	11.6	0.64	16
APSD1571	59	61	2	0.63	13
APSD1571	63	76.8	13.8	1.17	6

Hole Number	Easting	Northing	RL	Final depth	Azimuth	Inclination (in
	(m)	(m)	(m)	(m)	(in degrees)	degrees from
						horizontal)
APSD1159	508889.7	164699.4	290.787	136.8	270	-46
APSD1161	508993	164704.2	247.746	170.6	270	-50
APSD1168	508872.7	164903.4	299.444	224.7	265	-46
APSD1172	508867.8	164995.3	305.242	217.9	270	-46
APSD1176	508886.1	164595.4	260.455	262	270	-46
APSD1179	508910.2	164503.5	244.619	200.7	270	-46
APSD1182	508865.6	164799.1	307.308	279.7	270	-46
APSD1188	508966.6	164514.7	214.895	211.6	265	-46
APSD1191	508942.3	164298.5	196.381	166.8	270	-46
APSD1192	508920.4	164894.9	282.918	311.1	265	-46
APSD1194	508882.3	164396.8	217.715	185	270	-46
APSD1196	508883.7	164318.3	191.908	162.6	270	-46
APSD1197	508858.9	165170.8	398.049	295.6	270	-46
APSD1198	508974.6	164387.7	202.643	192.5	265	-46
APSD1200	508964.6	164605.2	230.675	256.9	270	-46

Horas West Drill Collar Locations

Horas West Drill Hole Assay Intercepts

Hole Number	From depth	To depth	Interval	Au_g/t	Ag_g/t
	(m)	(m)	(m)		
APSD1159	0	4	4	1.29	1
APSD1161	13.65	33.5	19.85	1.04	2
APSD1161	127	129	2	1.56	2
APSD1161	140	142	2	0.54	1
APSD1161	145.3	165	19.7	2.96	5
APSD1168	0.7	14	13.3	0.73	1
APSD1168	20	25	5	0.83	1
APSD1168	29	37	8	0.66	4
APSD1168	42	57	15	0.55	3
APSD1168	63	66	3	0.65	7
APSD1168	78	83	5	1	3
APSD1168	92	96	4	0.86	4
APSD1168	99	103	4	0.67	4
APSD1168	111	114	3	0.6	18
APSD1168	151	156	5	0.64	2
APSD1168	160.7	167	6.3	0.8	9
APSD1168	179	193	14	1.56	16
APSD1168	200	202	2	1.2	24
APSD1172	51.3	54.4	3.1	0.56	2
APSD1172	59.5	63.3	3.8	1.6	3
APSD1172	81.5	87.5	6	0.54	3
APSD1172	145	151.8	6.8	1.55	7
APSD1172	172.8	177	4.2	1.25	86
APSD1172	187	191	4	0.56	4
APSD1172	196	206.5	10.5	0.57	2
APSD1176	119	121	2	0.72	6
APSD1176	161.5	164.3	2.8	0.9	3
APSD1176	191	195	4	1.84	20
APSD1179	2	27	25	2.25	3
APSD1179	61	63	2	0.55	1
APSD1179	73	75	2	3.9	1
APSD1179	83	90	7	1.62	32
APSD1179	98	103.5	5.5	0.53	1
APSD1179	117.5	119.5	2	0.51	1
APSD1179	123.5	125.5	2	1.11	2
APSD1182	4.2	30	25.8	1.31	2
APSD1182	74	76	2	2.18	5

Hole Number	From depth	To depth	Interval	Au_g/t	Ag_g/t
	(m)	(m)	(m)		
APSD1182	113.5	117	3.5	0.73	4
APSD1182	160.4	168	7.6	1.36	4
APSD1182	174	177.6	3.6	0.8	3
APSD1182	182.7	194.2	11.5	1.23	2
APSD1182	197.2	202.2	5	4.27	59
APSD1182	206.7	211.2	4.5	110.9	19
APSD1188	207.4	210.1	2.7	1.67	6
APSD1191	4	16.6	12.6	1.51	0
APSD1191	19.6	72	52.4	1.24	1
APSD1192	53	57	4	0.6	3
APSD1192	120	123	3	0.65	5
APSD1192	127.2	137	9.8	0.65	4
APSD1192	141	144	3	0.56	3
APSD1192	171.5	190	18.5	0.77	39
APSD1194	117	119	2	10.7	2
APSD1196	8	11.1	3.1	0.67	0
APSD1196	19.1	35.1	16	0.77	1
APSD1196	134	136	2	0.54	4
APSD1197	157	160	3	1.11	4
APSD1197	184.4	186.4	2	1.12	8
APSD1197	191.1	197.3	6.2	0.73	19
APSD1197	210	221	11	1.15	4
APSD1197	224	226	2	1.91	4
APSD1197	292.2	294.2	2	0.87	2
APSD1198	18.4	22	3.6	0.5	5
APSD1198	65.8	74.4	8.6	0.95	0
APSD1198	112	114	2	0.84	1
APSD1200	53.7	65.7	12	0.81	6
APSD1200	69.7	73.3	3.6	1.14	15
APSD1200	97.3	99.3	2	0.62	3
APSD1200	171	173	2	0.59	2
APSD1200	181	185	4	0.56	1
APSD1200	195	197	2	0.55	1
APSD1200	201	211	10	0.58	2
APSD1200	244	246.5	2.5	2.81	24

Appendix 2: JORC Code, 2012 Edition – Table 1 report

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling.	Samples referred to in this report are diamond drill samples, trench/channel samples or rock samples. Diamond drilling is generally accepted as the highest quality sample possible for non-bulk sample mineral exploration. Trench/channel samples are representative of intersections at the surface but are regarded as lesser quality than diamond drilling. Trenches referred to in this report were channel sampled using a diamond blade rock saw to cut a channel of consistent width. The rock within this channel was sampled to a consistent depth using a hammer and chisel.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Diamond drill core was marked with sampling intervals by geologists according to geological boundaries and pre-determined minimum and maximum sampling lengths. Trench/channel samples were sampled at a consistent depth and size without bias. All samples are taken at 2-5kg in weight where possible, sealed in plastic bags and then placed in calico bags with waterproof tags to prevent sample contamination. Calibration of assay systems is done by the certified analytical laboratory.
	Aspects of the determination of mineralisation that are Material to the Public Report.	Half-core diamond drill core samples of approximately 4-5kg, were pulverised to produce 50g flux fused charge for fire assay.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	All the drilling reported in this document is from diamond core drilling. The majority of core at Purnama has been HQ size, with lesser PQ from surface to 100m depth and rarely NQ, where ground conditions have required core reduction. All drilling is triple tube to minimise sample disturbance. Until recently drilling has been conducted only with heli-portable rigs. As mining in the Purnama Open Pit progressed, an increasing number of drill sites were placed next to mining access roads.

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary			
		Where appropriate, a d The tool used is an Asa	lown hole core o ahi Orishot Proce	rientation tool is used ore orientation device	d to gather detailed structural information. e. PQ, HQ and NQ sizes are kept on site.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Core recovery is measured during geotechnical logging by comparing the length of recovered core versus the drill run. Drill sample recovery at Martabe is dependent on lithology, alteration type and structure. Overall the drill recovery has been very good. The table below shows historical averages			
		for drill recovery in diffe	No of Data 2778 732 7360	Average recovery (%) 78 92 94	osit.
		Andesite Clay Breccia Silica Breccia Volcanic Andesite Sediments Volcanic Basaltic Andesite	8559 7381 7643 15344 2437 2223	94 93 92 95 95 94	
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Drilling uses a triple tube recovery system to maximise core recovery. In areas where core loss is concern, i.e. more fractured Fe rich intervals, drill runs are limited to 0.20m. Efforts are made t minimise the loss of drilling fluids downhole, wherever possible. 			
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	A substantial body of te during sampling and d fractions. In the event removed from the data	est work has bee rilling. This sugg t there is signifi set at the stage	n completed at Marta lests that there is a r cant sample loss in of Resource Estimat	abe on loss of gold from the fine fractions no significant if any loss of gold from fine a mineralised zone, these assays are tion.

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All diamond drill holes were logged for geology and geotechnical features. Geotechnical logging was done by trained technicians under the supervision of geologists. Geotechnical logging includes measurements of drill run length, core recovery, RQD, Fracture count and fracture characteristics. Geological logging was done by geologists on hand written logging sheets, which were transcribed into the GBIS data entry platform. Logged characteristics include (but are not limited to) assay markup interval, lithology, structure, breccia type, alteration type and intensity, and mineralisation style(s) and intensity. Geological logging was undertaken by a relatively small team of geologists. The reproducibility of the geological logging was checked by senior geologists on a routine basis and these checks revealed that a high level of consistency was achieved. The logging geologists were involved in the interpretation process, ensuring that there was consistency between logging and interpretation. All core was digitally photographed after logging and before cutting and sampling.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	Visual geological and alteration logs are taken by a team of experienced geologists using a standardised logging scheme. Although visual logs are inherently qualitative, additional quantitative measurements of core are also taken routinely and are included in the interpretation of logged data. These include RQD measurements, SWIR analysis, and magnetic susceptibility measurements. These are all measured on a metre by metre basis. All drill the holes have been logged, and only rarely (such as from geotechnical holes in barren volcanics or sediments outside the mineralised zone) were samples not sent for assay.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Core was cut into halves using a diamond blade core- saw, with one half sampled and one half retained. Quarter core samples were only taken on rare occasions (e.g. for metallurgical sampling). N/A Samples are placed into sealed plastic bags with an internal tag, and then into numbered calico bags for delivery to the PT Intertek Utama sample preparation facility at Padang. The process for sample preparation is as follows: Drying Samples are placed onto aluminum trays and dried at 65°C. If samples are specified for low temperature drying or if Hg assay is requested then samples are dried at low temperature of < 65°C Crushing Crush samples using a Jaw Crusher. Jaw plates are cleaned after each sampling routine using a gravel wash. Jaw crusher size result < 5mm Pulvurising Use LM5, RM2000 and LM2 pulverize techniques employed depending on sample size. Samples pulverised to 200# (200# > 95%) Sizing tests performed 1/20 on each pulverize Bowls cleaned between each sample routine using a gravel wash.

Criteria	JORC Code explanation	Commentary
		 Rolling/Mixing The pulverized sample is then rolled/mixed in a rubber mat for a minimum of 20 times. Rubber mat cleaned thoroughly between samples. Splitting Riffle splitter used to split an analytical pulp sample of approximately 250g to be sent to Jakarta for analysis. Residue and Coarse rejects placed in a plastic bag and return to G-Resources. Thorough reporting is carried out throughout the process and G-Resources deems the sample preparation techniques appropriate and of sufficient quality.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	On average core was sampled at approximately 1m intervals through mineralised zones and 2-4m intervals through suspected zones of mineralised waste. Core was cut in half with a diamond saw, with half sampled and half retained for reference. Duplicate sampling of crushed was done by the laboratory with splits taken for their QA/QC process according to their procedures. The company takes duplicates on a campaign basis: these being either coarse reject or pulp sub-samples.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Studies of the Purnama deposit have demonstrated the fineness of gold observed in samples from Martabe. These show that approximately 73% of gold particles in samples are in the <5µm fraction, with a further 26% in the 5-50µm fraction, and less than 1% of gold particles exceeding the 50µm size fraction. Having said this, sample sizes are cautiously large; to ensure that samples remain representative and any nugget effects of gold are minimised.

Criteria	JORC Code explanation	Commentary							
Quality of	The nature, quality and appropriateness of the	Assaying was conducted at the PT Intertek Utama facility in Jakarta. The standard assaying suite							
assay data	assaying and laboratory procedures used and	used is shown in the table below:							
and	whether the technique is considered partial or								
laboratory	total.	Samples	El	ement	Lab_ Method	Method_ID	LDL	UDL	
tests				Au	Fire Assays	FA51	0.01ppm	50ppm	
				Au >20ppm	Gravimetric	FA12	3ppm	10%	
				Ag	AAS + Acid Digest	GA02	1ppm	10%	
				Ag >100ppm	AAS + 3Acid Digest	GA30	0.01%	5%	
			Priority 1 Elements	Cu	AAS + Acid Digest	GA02	2ppm	10%	
		Resources		Cu>10,000	AAS + 3Acid Digest	GA 30	0.01%	5%	
		DRILL CORE		As	X-Ray	XR01	1ppm	10%	
				As >10,000	X-Ray	XR01	0.01%	10%	
				SxS	LECO - SCIS	SCIS	0.01%	10%	
				AuCN	Cyanide Leachable	CN05	0.1ppm	10%	
			Elements	AgCN	Cyanide Leachable	CN06	1ppm	10%	
				CuCN	Cyanide Leachable	CN06	2ppm	10%	
		Note SxS = s	ulphide su	lphur					
		A suite of a	ditional	elements	was assaved by		our acid		NO3 HCLO4 HE) digest was
					was assayed by				
		used to ens	ure libera	ation of el	ements locked i	n silicate	matrice	s. The fu	Ill table of assayed elements
		with their as	sociated	detection	limits is presen	ted belov	v:		
					·				

Criteria	JORC Code explanation	С	ommenta	ary									
			Element Ag Bi Cr K Mn Ni Sn Te	LDL (0.5ppm) (2ppm) (0.01%) (2ppm) (5ppm) (10ppm) (10ppm)	Element Al Ca Cu La Mo Pb Sr Ti	LDL (0.01%) (0.01%) (2ppm) (1ppm) (2ppm) (2ppm) (1ppm) (0.01%)	Element As Cd Fe Li Na Sb S V	LDL (5ppm) (1ppm) (0.01%) (1ppm) (0.01%) (5ppm) (50ppm) (1ppm)	Element Ba Co Ga Mg Nb Sc Ta W	LDL (2ppm) (10ppm) (0.01%) (5ppm) (2ppm) (5ppm) (10ppm)	Method ID IC50	Lab Method ICP + 4 acid digest	
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	A h re T b T d g w e C p b	IY IN ASD as beer nodelling verage eadings SG soft y a train SG soft y a train iwo Terr rillcore uideline vith veri liminate Other dir redicted y outsid	((1ppm) Terraspe o conduc g. Samp for white taken o ware for hed oper aplus K is emplo is emplo is. Samp fication e outside ect mea d geophy le geoph	Izn ec 3 VIR oted since ole acqu e referen n a stand initial in ator. Dri T-10 ma oyed. The ole meas from o influence surement vsical me	(2ppm) /SWIR a and u isition is nce cali dard sp terpreta llcore m agnetic s ne mac surement utside ac on m nt geopl odels, h ontracto	zr spectror used for s set to ibration. ectralon ation, bu neasurer suscepti hines ar nts are to geophysical agnetic hysical to nowever ors.	(5ppm) meter w affirma take a White panel o t 100% ments a bility m re facto aken or sical co suscept ools ha these h	vas acqu tion of a n averag referenc obtained of readir re made eters are ny calibr n a per n ontractors tibility rea ve been nave bee	ired in e lteration ge of 50 e calibra from AS ngs take on a pe ated in netre ba s. Stand adings. used or n on a o	early 2013 a assemb 5 sample ation is p 6D. Interp n are visu er-metre b , and rou accordar sis and in dard coll n site, to o campaign	3. Routine sam lages used in s per reading, performed once pretation of spe ually checked a basis on all dril atine collection ince with the m interpreted both ection SOPs compare drill re basis and wh	Appling of core deposit scale 100 sample e in every 20 ectra uses the and corrected lcore. of data from nanufacturers n on site, and are used to esults against nolly operated

Criteria	JORC Code explanation	Commentary
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Quality assurance was conducted in these ways: An ongoing QA/QC program was conducted using blind samples which included blank samples and certified reference standards. Only certified laboratories were used. Assay laboratories used for Resource Estimation work were audited by PTAR every two years.QA/QC Program. PTAR has a suite of certified and non-certified standards ("Standards") covering a range of grades and elements (including Au, Ag and Cu but not sulphide sulphur). Certified standards, sourced from Geostat Pty Ltd and Ore Research and Exploration (OREAS) Pty Ltd, were submitted as part of this campaign. Either a Standard or Blank was inserted at the rate of 1 in every 20 samples. Overall PT Intertek Utama performed very well with these standards, with the few anomalies observed considered likely due to mislabeling or data mismatching errors. These were corrected after receipt of the final assay
Varification of	The continentian of element interpretions have	results (usually within six weeks of sample submission).
verification of	i ne verification of significant intersections by	Significant intersections quoted in this report were verified by Mr. Janjan Hertijana, MAusIMM and full
sampling and	either independent or alternative company	time employee of the Company.
assaying	personnel.	
	The use of twinned holes.	A large number of 'scissor" intersections are available which provide short range validation of
		geological models and geostatistical parameters. Twinned holes have been drilled in the past to collect samples for metallurgical test work.

Criteria	JORC Code explanation	Commentary
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All sample collection data, geological logging, borehole location and laboratory analysis results are retained and archived. All data is backed up with both a daily full SQL backup, and a weekly compilation. Monthly downloads to DVD are stored in a separate location to database hardware.
		Data entry and QA/QC are managed in-house by an experienced database manager.
	Discuss any adjustment to assay data.	No adjustments to assay data are made.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Diamond drill hole collar locations were located through Total Station. Most surveys were completed by a contracted licensed surveyor. Later surveys have been undertaken by a PTAR mine surveyor in some cases. Collar survey positions were validated by senior geologists before being entered into the SQL database. Down hole measurements have been conducted exclusively with electronic survey tools, consisting of a magnetic compass and inclinometer with electronic reading. Surveys were taken at 20m below the collar, and then at 50 metre depths down the hole (i.e. 50m, 100m 150m and so on until end of hole).
	Specification of the grid system used. Quality and adequacy of topographic control.	The grid system employed is UTM (WGS84) Zone 47N. A LIDAR survey was conducted by PT Surtech Utama Indonesia in June 2010. The survey covered an area of 13,600 ha surrounding the Martabe project area. Data capture was at nominal point density of more than 2 points per square metre. The Lidar survey accuracy was measured with post processed kinematics GPS survey using approximately 30 points at one location. The error between the two methods was found to be within 5cm. Processed data was produced to a grid at 0.15cm spacing. The data was presented to PTAR as ASCII files suitable for creation of a digital terrain model, and as rectified, georeferenced orthophotos.

Criteria	JORC Code explanation	Commentary
		Lidar does not completely penetrate vegetation and this can lead to elevation inaccuracies in densely forested areas, such as the original surface of the Purnama deposit. The LIDAR surface may have greater elevation than the actual ground surface (up to several metres in places), however this accuracy is adequate for the purpose of constructing Mineral Resource Estimates.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill holes were completed on nominal E-W sections, spaced at the following intervals in the vertical and horizontal planes: Measured Resources: 25 metre spacing or less Indicated Resources: 25 metre by 50 metre Inferred Resources: 50 metre by 50 metre
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is sufficient to establish geological and grade continuity. This has been established by variography and by comparing the results of drilling against close spaced grade control drilling in the Purnama Deposit.
	applied.	results are mathematically composited into appropriate lengths for the element being estimated.
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Sample orientation is varied where possible to nearly perpendicular to the strike of mineralisation. Steep topography means that sampling may not be perpendicular to the dip of mineralisation. Scissor holes and more recently horizontal capable drill rigs have been used to overcome sampling bias.

Criteria	JORC Code explanation	Commentary
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Where possible, drilling has attempted to intersect structures as close to normal to the structures strike extension as possible. It is not considered that bias has been introduced by this practice.
Sample security	The measures taken to ensure sample security.	Sample security was controlled through supervision of the diamond samples on the drill rigs, security controls in the core shed, and through controls on transportation of samples to a commercial assay preparation area off-site. In 2011, security staff at the Martabe Gold Mine completed a review of security related to exploration sample handling. This review did not find significant issues in the security arrangements of core handling.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Reviews of the exploration program (including sampling techniques and data) were held as follows: During and after the estimation process: internal reviews of the geological modelling and estimation processes were held on a regular basis. Independent consultants in specialist areas provided advice as appropriate (for example QA/QC evaluation prior to resource estimation). The results were documented as minutes of meetings and consulting reports. Every two years: an independent, expert review of the systems and processes relating to the Exploration programme and Mineral Resource Estimation Process were conducted. The last such review was completed in August 2014 by an independent consultant. The review consisted of 5 days onsite at the Martabe Gold Mine, where the consultant examined aspects of the

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference name/number, location and	skills and competency. Areas for improvement were noted regarding some ongoing operational aspects of the resource development program. These have been addressed and do not affect the issue or underlying quality of this report. The Martabe Gold Mine is located in the Martabe Contract of Work ("CoW") area. This "Generation 6"
tenement and land tenure status	ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Cow was signed in 1997 and provides for a minimum 30 years tenure after production has commenced. The Martabe Gold Mine was fully permitted at the time of writing. Under Indonesian laws this includes water discharge permits for treated mine runoff and process waters, rent use permit of forest and environment permit for exploration activities, various environmental, operation and production approvals, and gold and silver bullion export permits amongst other permits and approvals.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Martabe deposits were discovered in 1997-98 during a regional reconnaissance exploration program conducted by a joint venture between Normandy and Anglo Gold Corporation. A bulk leach extractable gold (BLEG) stream sediment survey located the Martabe cluster of deposits. Three deposits were initially identified, including the Purnama deposit. Surface exploration work included mapping, rock and soil sampling. Drilling commenced in October 1998 and the potential of the Purnama Deposit was quickly recognised. Multiple phases of exploration up to delineation drilling were continued throughout several ownership changes. A high level of continuity and work quality has been maintained over the project life.
Geology	 Deposit type, geological setting and style of mineralisation. 	The general geology of the Martabe Deposits Martabe Region and the district surrounding Martabe is

Criteria	JORC Code explanation	Commentary
		well described by Harlan et al (2005) and Supoto et al (2003).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth 	Refer to Appendix 1 of this report for details of all drilling relevant to these exploration results. All new significant drilling results for the period of July 2015 to 15 October 2015 within the areas under discussion are supplied in this Appendix.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Refer to Appendix 1 for details.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of	Refer to Appendix 1 for details. Metal equivalent values are not reported.
	metal equivalent values should be clearly stated.	

Criteria	JORC Code explanation	Commentary
Relationship	These relationships are particularly important	Figures in the main text explain the geometry between drill holes and the orientation of
between	in the reporting of Exploration Results. If the	mineralisation. All figures reported are down hole and not true widths, as explicitly stated in Appendix
mineralisation	geometry of the mineralisation with respect to	1.
widths and	the drill hole angle is known, its nature should	
intercept	be reported. If it is not known and only the	
lengths	down hole lengths are reported, there should	
	be a clear statement to this effect (e.g. 'down	
	hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales)	Refer to Figures in the main text.
	and tabulations of intercepts should be	
	included for any significant discovery being	
	reported These should include, but not be	
	limited to a plan view of drill hole collar	
	locations and appropriate sectional views.	
Balanced	Where comprehensive reporting of all	All material drill intersections are reported in Appendix 1 for the areas under discussion in this report.
reporting	Exploration Results is not practicable,	
	representative reporting of both low and high	
	grades and/or widths should be practiced to	
	avoid misleading reporting of Exploration	
	Results.	
Other	Other exploration data, if meaningful and	Details are reported in the main text.
substantive	material, should be reported including (but not	
exploration	limited to): geological observations;	
data	geophysical survey results; geochemical	

Criteria	JORC Code explanation	Commentary
	survey results; bulk samples – size and	
	method of treatment; metallurgical test results;	
	bulk density, groundwater, geotechnical and	
	rock characteristics; potential deleterious or	
	contaminating substances.	
Further work	The nature and scale of planned further work	Details are reported in the main text.
	(e.g. tests for lateral extensions or depth	
	extensions or large-scale step-out drilling).	
	Diagrams clearly highlighting the areas of	Details are reported in the main text.
	possible extensions, including the main	
	geological interpretations and future drilling	
	areas, provided this information is not	
	commercially sensitive.	