

Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement.

G-Resources Group Limited 國際資源集團有限公司* (Incorporated in Bermuda with limited liability) (Stock Code: 1051)

ANNOUNCEMENT

G-RESOURCES – EXPLORATION UPDATE

Hong Kong, 30 October 2014

G-Resources Group Limited (HKSE: 1051 – "G-Resources" or the "Company") is pleased to update the market with recent exploration results at G-Resources' Martabe gold and silver mine in Indonesia.

HIGHLIGHTS

G-Resources continues its successful exploration programme at the Martabe Gold and Silver mine in North Sumatra. Recent drilling activity has focused on the potential for expanding the Mineral Resource Estimates at Martabe. Drilling has been conducted on extensions to known Resources at the Purnama, Barani, Uluala Hulu and Tor Uluala deposits.

The key results from exploration work are:

- Drilling and geological investigations continue to extend the known mineralisation at the Martabe Deposits
- Best results from drilling include:
 - 66.0m @ 1.43 g/t Au (from extensions under the Purnama Deposit)
 - 23.8m @ 3.80 g/t Au (from extensions to the Barani Deposit)
 - 71.8m @ 3.30 g/t Au (from extensions to the Uluala Hulu deposit)
- Trenching results at Tor Uluala have extended the mineralisation to the north, and confirms mineralisation extends to surface in some areas. Best results from this trenching include:
 - 11m @ 6.36 g/t Au, including 5m @ 8.17 g/t Au
 - 33m @ 13.49 g/t Au, including 14m @ 29.2 g/t Au

EXPLORATION FOR EXTENSIONS TO THE PURNAMA DEPOSIT

Exploration continues to define extensions to the Purnama deposit. Recent work has focused on:

- defining the limit of mineralised zones to the south east of the current pit; and
- locating depth extensions of Purnama.

Significant drill intersections were returned against these targets. Figure 3 shows these target locations relative to the infrastructure at the Martabe Gold Mine.

Purnama South East

The majority of results from Purnama South east extensions have been previously reported in the May 2014 Exploration Update. Final results of twelve drill holes at the Purnama South east deposit were not reported and have since been received. The best results from this drilling are:

- APSD1414: 36.3m @ 1.14 g/t Au from 137.2m depth
- APSD1415: 28.0m @ 1.24 g/t Au from 129.0m depth

A complete list of hole locations and results is provided in Appendix 1, Table A1. Cross sections showing the location of some of the significant intersections are shown in Figure 4.

This drilling will be incorporated into a new Purnama Mineral Resource estimate to be released in 2015, as described in the next section below.

Purnama Depth Extensions

The confirmation of feeder system depth extensions to the Purnama Deposit was previously reported in May 2014. This was the result of successful application of a geological model to the exploration programme. The programme was made possible by the introduction of specially modified diamond drill rigs capable of drilling horizontal holes. Three horizontal rigs were in operation over the first half of 2014.

Following the initial results, the horizontal drilling programme continued and was successful in defining three dimensional continuity of mineralisation in these feeder zones. Several wide zones were intersected.

As intersections from this program are from horizontal or near horizontal drilling, the results are approximate true widths of mineralisation. The best intersections are:

- APSD1411: 66.0m @ 1.43 g/t Au from 207.7m depth and 25m @ 1.13 g/t Au from 319.8m depth
- APSD1421: 49.0m @ 0.99 g/t Au from 101m depth and 38.0m @ 1.21 g/t Au from 176m depth
- APSD1454A: 11m @ 1.36 g/t Au from 132m depth, and 38.0m @ 0.84 g/t Au from 147m depth
- APSD1458: 49.5m @ 1.03 g/t Au from 104.5m depth

This work confirms that mineralisation extends downwards in some places to at least 100 metres under the current Mineral Resource block model. An infill drilling programme is underway to infill between this new horizontal drilling and the existing Purnama Mineral Resource. This programme will be completed in 2015, at which point a new Mineral Resource will be estimated. As stated in the 29 May 2014 Exploration Announcement, this drilling is also testing the positive mine reconciliation achieved against the Resource Estimate to date which could have a positive impact on the Mineral Resource Estimate.

To complete this infill programme a reverse circulation ("RC") drill rig is currently drilling in the operating mine area. RC drilling is at least four times the speed of diamond drilling, one-third the cost per metre to drill and as the rig is tracked does not require helicopter support.

This infill drilling will potentially allow for downward extension of the Purnama Resource and Reserves, and may expand the mineral inventory for a potential sulphide ore processing Resource.

A complete list of hole locations and results is provided in Appendix 1, Table A2. Figure 5 shows some of the significant intersections and interpretation of the feeder zone depth extensions.

RC drilling in the Purnama open pit. This is the second RC rig on site, dedicated to resource development drilling. It is currently drilling infill delineation holes to greater than 100m depth.

BARANI RESOURCE EXTENSION

Drilling at Barani continues to target the southern extension of the planned Barani South open pit, and extensions at depth. Mineralisation outcrops at the surface. To date the mineralisation has been extended immediately south of the planned pit by 200 metres. Figure 6 shows a plan view of the extension and reported drilling results relative to the current open pit design.

This mineralization occurs as fractured quartz vein breccias outcropping on a narrow ridge. The topography and fracturing make this area difficult to access and drill. Currently an access track is being developed so that RC drilling can be used to complete a detailed infill drilling programme.

In the recent drilling 12 diamond holes were completed. Best results from this drilling are:

- APSD1427: 15.2m @ 3.8 g/t Au from 72.1m
- APSD1436: 11.4m @ 1.15 g/t Au from surface
- APSD1443: 23.8m @ 3.8 g/t Au from 26.5m and 44.9m @ 1.82 g/t Au from 52.4m

A complete list of recent hole locations and results is provided in Appendix 1, Table A3. A cross section showing some of the significant intersections is provided in Figure 6.

Work is now underway to complete an updated Mineral Resource Estimate for Barani by the end of 2014.

ULUALA HULU RESOURCE EXTENSION

Since the previously reported results, additional extensions to the Uluala Hulu Resource have been identified and drilled. Work is now underway to compete an updated Mineral Resource estimate for Uluala Hulu by the end of 2014. Best results from this drilling are:

- APSD1445: 71.8m @ 3.30 g/t Au from 56.0m
- APSD1456: 19.2m @ 1.20 g/t Au from 12.0m
- APSD1459: 19.7m @ 1.41 g/t Au from 25.4m and 11.9m @ 0.91 g/t Au from 50.1m

A complete list of diamond drill hole locations and results is provided in Appendix 1, Table A4. A cross section showing some of the significant intersections is provided in Figure 7.

Diamond drilling at Uluala Hulu.

A weekly safety meeting at the Uluala Hulu camp with field supervisors, drillers and camp paramedic. All remote drilling camps are staffed with a paramedic for emergency response and daily occupational health.

Tor Uluala Trenching and Drilling

Exploration commenced at Tor Uluala after a data review indicated potential to extend the mineralisation in three dimensions. An ongoing programme of trench sampling has been followed up by diamond drilling. Both trenching and diamond drilling returned significant results. The goal of the current program is to fully define the extent of mineralisation to Inferred Resource Status. This will then allow scoping studies to determine potential mining strategies and scheduling for this resource, before additional work is done to bring the resource to Indicated and Measured Status.

Trenching was conducted using local labour to hand dig trenches to bedrock. The trenches were then channel sampled with a diamond bladed, hand held rocksaw. These trenches indicate that the Tor Uluala Deposit extends to the northeast (Figure 8); and that mineralisation extends to the surface in some areas where it has been truncated at depth in the Resource Model due to inadequate drill coverage (Figure 8).

The best results from this trenching program are:

- TUA-07: 45.5m @ 1.51 g/t Au
- TUA-08: 41.0m @ 1.76 g/t Au
- TUA-11: 26.0m @ 1.83 g/t Au
- TUA-23: 23.0m @ 4.05 g/t Au
- TUA-28b: 11m @ 6.36 g/t Au, including 5m @ 8.17 g/t Au
- TUA-30: 33m @ 13.49 g/t Au, including 14m @ 29.2 g/t Au

Note that trench results are not necessarily true widths of mineralisation.

Diamond drilling commenced to test north eastern extensions. The program is ongoing, with results from three drill holes received to date. The best results are:

• APSD1462: 18.1m @ 1.41 g/t Au from 59.0m

It is expected this work will result in an increase to the Tor Uluala Inferred Resource in 2015.

A complete list of trenching and diamond drill hole locations and results is provided in Appendix 1, Tables A5 and A6.

MARTABE IMPROVEMENT PROGRAMME

The Martabe Improvement Programme ("MIP") is a focused programme to increase the efficiency of the Martabe Gold Mine, and has been reported on in recent Quarterly reports. The exploration team is intent on reducing the exploration cost per ounce of gold discovered while maintaining industry best practice and highest quality and safety standards.

Major initiatives underway are to augment diamond drilling with alternate sampling methods, namely surface trenching and RC drilling. These methods are faster and cheaper than diamond drilling and eliminate the requirement for helicopter support of drill rigs. Diamond drilling will never be replaced as the primary resource definition method but there are significant cost and technical advantages in these other methods.

The team is investigating the use of surface trench sampling to augment diamond drill holes for geostatistical estimation near the surface in rough terrain. Current practice is to drill many short, near surface holes which is expensive and time consuming. As trenches are hand dug by local contractors, this is potentially a large cost saving over use of diamond drill rigs, and can often contribute to a better geological interpretation as more data can be collected.

Using surface trenches in the estimation data set will require the collection of sufficient duplicate samples to form a statistically valid comparison dataset for quality assurance. The main concern is potential inconsistent sampling by technicians. To mitigate this, the trenches are channel sampled in bedrock using a hand held diamond blade rock saw, which is as close a sample to a diamond drill core as possible. Multiple adjacent samples are used to determine variability due to potential sampling error or near surface geological effect such as surface slumping or mobilization of oxidized gold.

The second initiative is to replace diamond drilling by RC drilling where possible. RC drilling is much faster and approximately one-third the cost of diamond drilling. Where there is no existing mining, pioneer tracks must be constructed, which puts a limit on where the RC rig can be used ahead of the mine production schedule. Protocols are in place to avoid sample contamination by wet sample, and to look for inconsistencies (such as sample bias and differences in geological logging) between the RC and diamond drilling data.

Martabe exploration technical staff compiling geological maps. 98% of exploration employees and contractors are Indonesian nationals and operate in all management, technical and non-technical areas.

COMPETENT PERSON STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on information compiled by Mr. Shawn Crispin, a Competent Person who is a Member and Certified Professional of the Australasian Institute of Mining and Metallurgy. Mr. Crispin is a full time employee of G-Resources.

Mr. Crispin has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Crispin consents to the inclusion of the matters based on his information in the form and context in which it appears.

G-Resources issues all public results under the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code 2012 Edition)". The Code requires reporting across most of the operational aspects of the exploration programme. The reporting requirements are specified in Table 1 of the Code and provided in Appendix 2 attached to this report.

ABOUT MARTABE

The Martabe mine is located on the western side of the Indonesian island of Sumatra in the Province of North Sumatra, in the Batangtoru sub-district (Figure 1). Martabe is established under a sixth generation Contract of Work ("CoW") signed in April 1997. The CoW defines all of the terms, conditions and obligations of both G-Resources and the Government of Indonesia for the life of the CoW.

Martabe Mine Aerial view.

Martabe, with a resource base of 8.1 million ounces of gold and 73.8 million ounces of silver, is G-Resources Group's core starter asset. Martabe's operating capacity is to mine and mill the equivalent of 4.5 mtpa ore to produce some 250,000 ounces gold and 2 million ounces silver per annum. Costs are competitive when compared to global gold producers.

G-Resources is seeking to organically grow gold production through continued exploration success on the large and highly prospective CoW area (Figure 2). The Martabe mine enjoys the strong support of the Indonesian Central, Provincial and Local Governments and the nearby communities of Batangtoru.

By Order of the Board G-Resources Group Limited Peter Geoffrey Albert Chief Executive Officer

Hong Kong, 30 October 2014

As at the date of this announcement, the Board comprises:

- (i) Mr. Chiu Tao, Mr. Owen L Hegarty, Mr. Peter Geoffrey Albert, Mr. Ma Xiao, Mr. Wah Wang Kei, Jackie and Mr. Hui Richard Rui as executive directors of the Company; and
- (ii) Mr. Or Ching Fai, Ms. Ma Yin Fan and Mr. Leung Hoi Ying as independent non-executive directors of the Company.

T. +61 3 8644 1330

For media or investor enquiries please contact:

Hong Kong:	Melbourne, Australia:
Mr. Richard Hui	Mr. Owen Hegarty
T. +852 3610 6700	T. +61 3 8644 1330
Ms. Joanna Ip	Ms. Amy Kong

* For identification purpose only

T. +852 3610 6700

Figure 1: Martabe Mine Location.

Figure 2: Martabe Contract of Work.

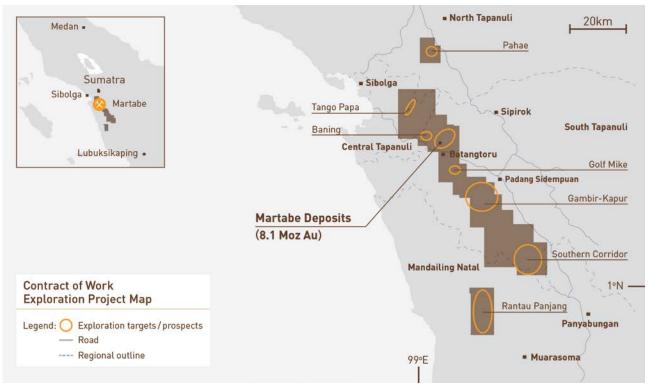
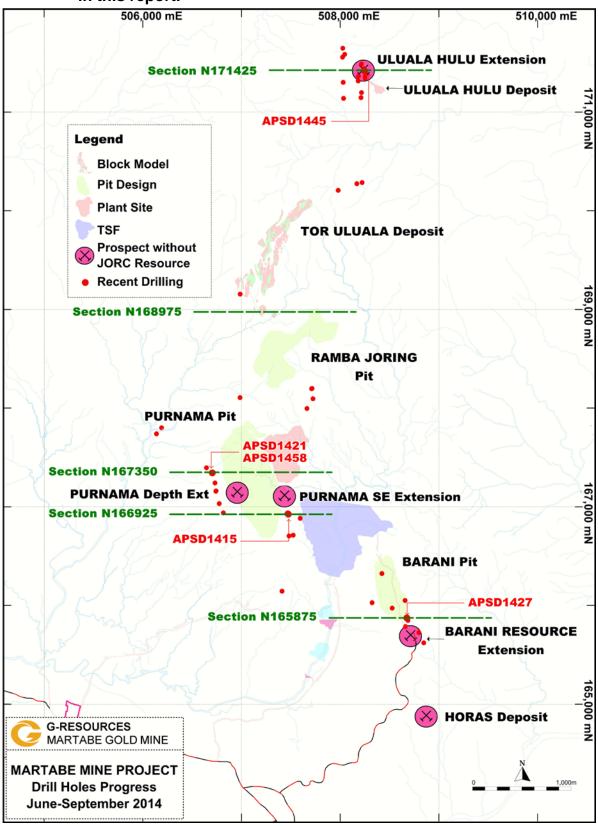
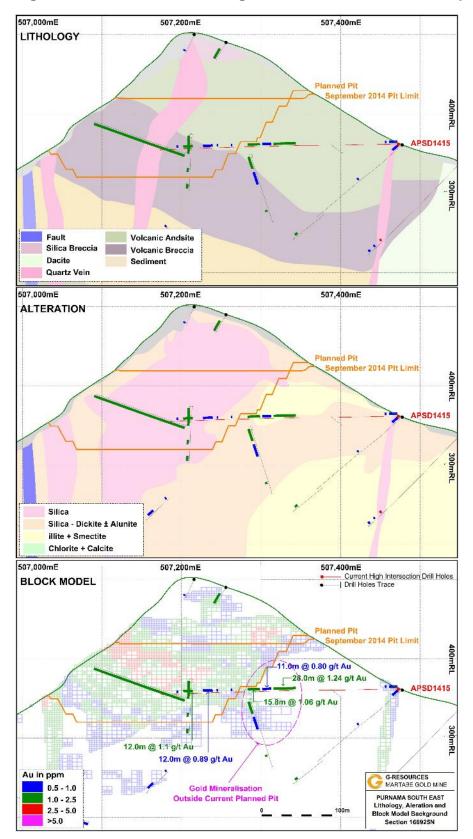
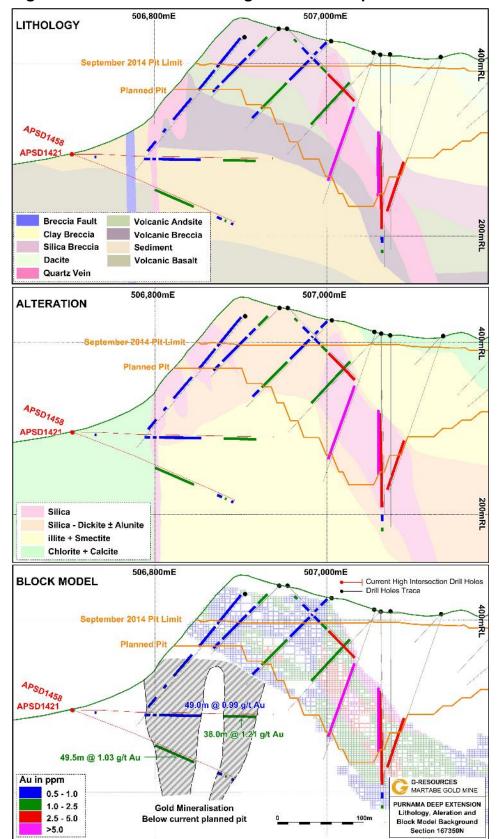
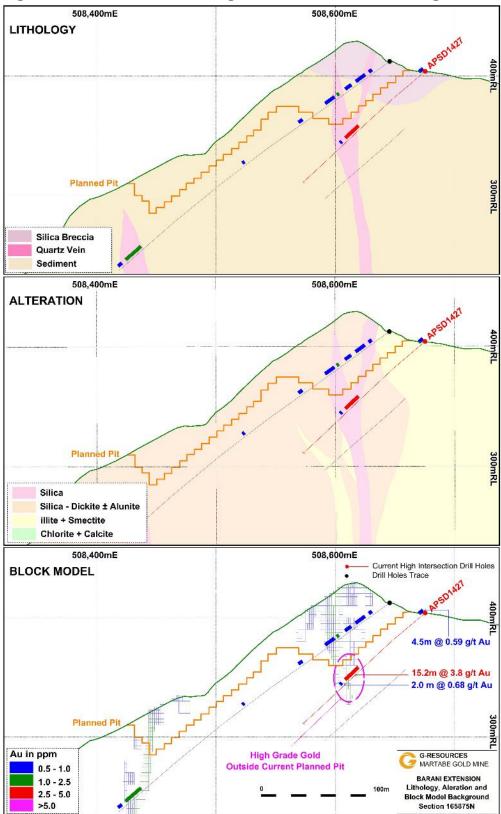



Figure 3: Plan location of prospects, recent drill holes and cross sections referred to in this report.

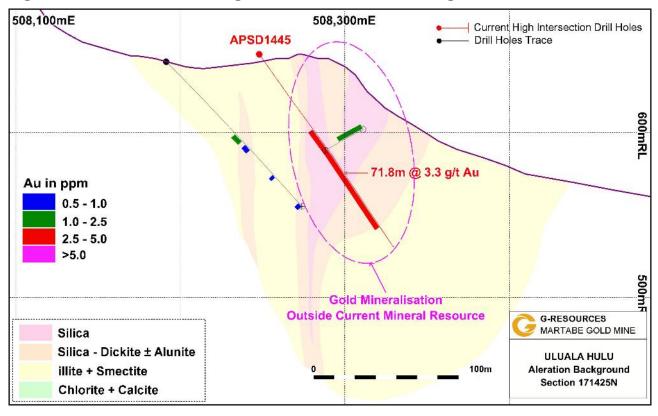

Figure 4: Cross section through Purnama South East Prospect, Purnama Deposit.

Figure 5: Cross sections through Purnama Depth Extensions.

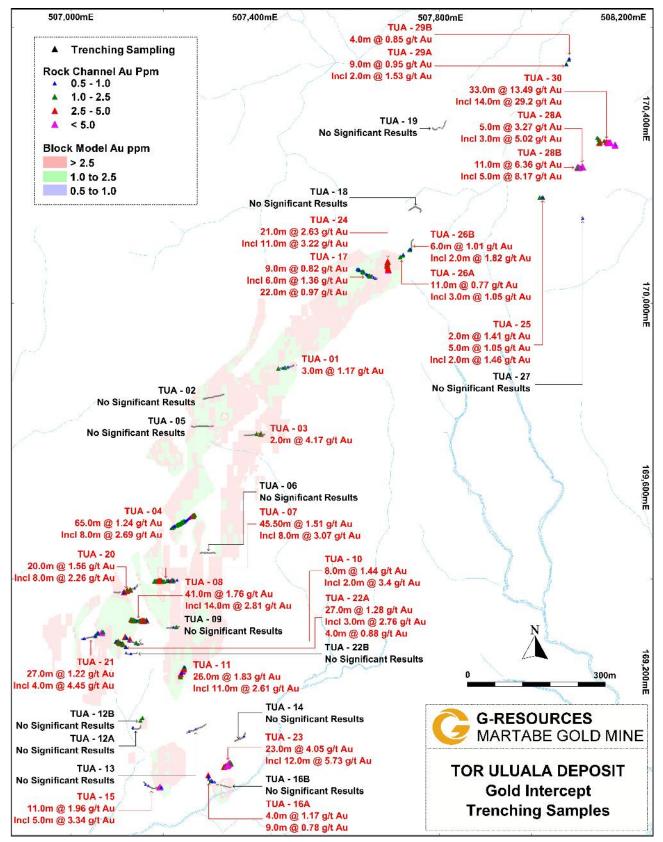

Figure 6: Cross Section through Barani Extension Drilling.



Figure 7: Cross Section through recent Uluala Hulu drilling.

Figure 8: Plan of Tor Uluala trench locations.

Appendix 1: Drill hole information

This appendix provides drill hole information relevant to the contents of this report. Drill holes are reported as follows:

- The grid system employed is UTM (WGS84) Zone 47N.
- Significant intersections are calculated with a 0.5 g/t gold cut over a maximum of 2 metres of contiguous internal waste. One significant intersection may contain multiple intersections of internal waste.
- All intersections are down hole and may not necessarily be true widths.

Table A1. Purnama South East Diamond Drilling Locations and Results

Hole Number	Easting (m)	Northing (m)	RL (m)	Final depth (m)	Azimuth (in degrees)	Inclination (in degrees from horizontal)
APSD1414	507512.9	167025.8	381.4	202.0	300	-60
APSD1415	507472.6	166930.2	362.0	300.0	270	0
APSD1416	507511.4	167028.3	381.3	181.8	270	-35
APSD1417	507532.3	166817.5	348.8	156.7	270	-10
APSD1418	507478.7	168006.9	485.3	570.1	280	-65
APSD1420	507521.2	167025.6	381.6	128.0	60	-40
APSD1423	507469.5	167025.4	382.0	150.3	270	-15
APSD1424	507533.8	166817.6	347.2	155.4	270	-45
APSD1426	507523.3	166715.4	324.3	158.0	270	-30
APSD1428	507476.1	166931.4	360.0	138.1	270	-40
APSD1430	507482.1	166707.1	337.0	109.9	270	0
APSD1431	507595	166886.7	306.9	200.8	270	-20

Drill Collar Locations

Drill hole Assay Intercept

Hole Number	From depth (m)	To depth (m)	Interval (m)	Au_g/t	Ag_g/t
APSD1413	5.4	7.4	2.0	0.59	5
APSD1413	83.4	85.4	2.0	0.56	55
APSD1414	37.3	39.3	2.0	2.91	58
APSD1414	75.8	89.8	14.0	0.91	16
APSD1414	95.0	102.0	7.0	0.7	11
APSD1414	137.2	173.5	36.3	1.14	17
APSD1414	176.5	179.5	3.0	0.66	13
APSD1415	1.5	11.6	10.1	0.73	5
APSD1415	14.9	17.0	2.1	0.66	3
APSD1415	129.0	157.0	28.0	1.24	13
APSD1415	160.0	171.0	11.0	0.8	13
APSD1415	174.0	189.8	15.8	1.06	16
APSD1415	208.8	210.8	2.0	0.71	5

Hole Number	From depth (m)	To depth (m)	Interval (m)	Au_g/t	Ag_g/t
APSD1415	226.6	228.6	2.0	0.95	23
APSD1415	233.6	245.6	12.0	0.89	9
APSD1415	258.6	270.6	12.0	1.1	10
APSD1415	277.0	279	2.0	0.91	34
APSD1416	44.2	49.2	5.0	0.69	2
APSD1416	53.7	71.2	17.5	1.51	5
APSD1416	74.2	77.8	3.6	3.9	8
APSD1416	158.8	164.3	5.5	0.88	7
APSD1417	27.2	36.2	9.0	1.31	22
APSD1417	52.0	54	2.0	0.73	9
APSD1417	90.0	94.3	4.3	0.67	12
APSD1420	0.0	5.2	5.2	1.44	0
APSD1420	12.2	19.2	7.0	0.54	1
APSD1420	54.7	59	4.3	0.97	3
APSD1420	70.3	81.5	11.2	0.87	7
APSD1420	100.3	102.3	2.0	0.53	1
APSD1423	9.9	11.9	2.0	0.56	0
APSD1423	15.9	24.5	8.6	1.4	0
APSD1423	92.0	106.5	14.5	1.35	7
APSD1423	119.7	125.5	5.8	2.42	24
APSD1424	12.0	14.0	2.0	0.63	4
APSD1424	49.0	57.0	8.0	0.69	19
APSD1426	65.8	72.7	6.9	0.77	8
APSD1426	77.5	79.5	2.0	0.54	7
APSD1428	1.6	12.1	10.5	0.58	3
APSD1428	68.0	70.0	2.0	0.60	5
APSD1430	10.9	21.0	10.1	0.66	7
APSD1430	103.5	109.9	6.4	0.80	6
APSD1431	51.1	55.6	4.5	0.95	15
APSD1431	176.1	186.8	10.7	1.19	16

Table A2: Purnama Depth Extension Diamond Drilling Locations and Results

Collar Locations									
Hole Number	Easting (m)	Northing (m)	RL (m)	Final depth (m)	Azimuth (in degrees)	Inclination (in degrees from horizontal)			
APSD1411	506773.7	167034.0	282.4	386.3	90	0			
APSD1421	506703.8	167345.7	295.4	233.7	90	0			
APSD1432	506739.4	167161.4	294.3	229.4	90	0			
APSD1433	506774.2	167034.6	283.1	140.9	90	-15			
APSD1441	506816.3	166941.7	282.4	281.5	90	-15			
APSD1442	506741.9	167163.4	292.8	251.7	90	-25			
APSD1449	506731.6	167244.8	296.5	174	90	-30			
APSD1454	506644.5	167398.1	286.6	110.1	90	0			
APSD1454A	506644.5	167398.1	286.6	239.9	90	0			
APSD1458	506704	167345.7	295.6	204.1	90	-20			

Collar Locations

Drill hole Assay Intercept

Hole Number	From depth (m)	To depth (m)	Interval (m)	Au_g/t	Ag_g/t
APSD1411	0.0	9.8	9.8	1.4	3
APSD1411	13.5	15.9	2.4	0.74	2
APSD1411	174.8	176.8	2.0	0.59	4
APSD1411	184.8	186.8	2.0	0.52	1
APSD1411	207.7	273.7	66.0	1.43	32
APSD1411	276.5	283.8	7.3	0.72	68
APSD1411	302.8	309.0	6.2	0.58	30
APSD1411	319.8	344.8	25.0	1.13	14
APSD1411	382.8	384.8	2.0	1.05	12
APSD1421	26.0	28.0	2.0	0.68	4
APSD1421	83.7	90.7	7.0	0.62	14
APSD1421	93.7	98.0	4.3	0.59	9
APSD1421	101.0	150.0	49.0	0.99	13
APSD1421	176.0	214.0	38.0	1.21	14
APSD1432	0.0	39.2	39.2	1.05	5
APSD1432	41.9	72.6	30.7	1.11	4
APSD1432	118.9	129.4	10.5	0.68	5
APSD1432	132.4	136.4	4.0	1.06	15
APSD1432	145.3	149.3	4.0	0.58	20
APSD1432	154.3	168.1	13.8	0.74	13
APSD1432	171.6	173.6	2.0	0.66	12
APSD1432	176.6	183.7	7.1	0.59	22
APSD1432	197.7	200.7	3.0	0.54	10
APSD1432	210.7	222.4	11.7	0.69	7
APSD1433	4.0	8.5	4.5	0.73	1
APSD1433	26.5	28.5	2.0	0.78	4
APSD1441	0.0	21.7	21.7	1.04	1
APSD1441	249.2	263.2	14	1.53	18

Hole Number	From depth (m)	To depth (m)	Interval (m)	Au_g/t	Ag_g/t
APSD1441	268.2	281.5	13.3	0.63	21
APSD1442	0.0	9.0	9.0	2.01	9
APSD1442	145.0	147.0	2.0	0.56	2
APSD1442	179.0	181.0	2.0	0.86	7
APSD1442	201.0	204.0	3.0	1.12	4
APSD1442	219.0	223.0	4.0	0.65	4
APSD1442	249.0	251.7	2.7	0.67	3
APSD1449	2.0	4.0	2.0	0.53	0
APSD1449	46.0	50.0	4.0	0.91	0
APSD1449	148.0	161.0	13.0	0.65	10
APSD1454	61.0	63.0	2.0	0.61	1
APSD1454	105.0	110.1	5.1	0.6	16
APSD1454A	114.8	123.0	8.2	0.63	5
APSD1454A	132.0	143.0	11.0	1.36	12
APSD1454A	147.0	185.0	38.0	0.84	11
APSD1454A	188.0	194.0	6.0	0.51	20
APSD1454A	197.0	211.7	14.7	1.13	13
APSD1458	104.5	154.0	49.5	1.03	8
APSD1458	183.5	189.5	6.0	0.52	5
APSD1458	193.5	195.5	2.0	1.21	6
APSD1458	201.5	204.1	2.6	0.64	9

Table A3: Barani Extension Diamond Drilling Locations and Results

Collar Locations									
Hole Number	Easting (m)	Northing (m)	RL (m)	Final depth (m)	Azimuth (in degrees)	Inclination (in degrees from horizontal)			
APSD1412	508686.5	165839.68	413.4	120.0	255	-10			
APSD1413	507482.6	166901.47	355.5	133.9	270	0			
APSD1419	508774.2	165704.17	456.6	129.5	270	-50			
APSD1422	508841.1	165698.46	450.6	147.5	270	-45			
APSD1425	508738.3	165767.08	459.5	146.7	270	-65			
APSD1427	508675.3	165875.04	404.0	138.1	270	-40			
APSD1429	508847.0	165624.71	433.8	177.3	270	-60			
APSD1436	508661.5	165789.68	457.2	172.5	270	-50			
APSD1438	508686.5	165851.79	408.4	137.0	270	-45			
APSD1440	508422.2	166325.98	379.4	139.8	270	-65			
APSD1443	508526.3	165976.0	384.8	155.4	270	-40			
APSD1446	508658.0	166053.0	402.0	213.9	270	-50			
APSD1455	508324.0	166031.0	233.0	171.0	105	-10			

Drill hole Assay Intercept

Hole Number	From depth	To depth	Interval	Au_g/t	Ag_g/t
	(m)	(m)	(m)	,9,.	.9_9.1
APSD1412	0.0	6.6	6.6	1.07	1
APSD1412	62.0	99.4	37.4	0.76	2
APSD1412	114.2	119.0	4.8	0.69	3
APSD1419	64.0	67.4	3.4	1.06	1
APSD1419	111.7	117.8	6.1	0.82	2
APSD1422	26.0	28.0	2.0	0.69	0
APSD1422	63.7	66.0	2.3	0.79	1
APSD1422	125.2	127.2	2.0	0.60	1
APSD1425	143.7	146.7	3.0	0.83	2
APSD1427	0.0	4.5	4.5	0.59	1
APSD1427	72.1	87.3	15.2	3.80	3
APSD1427	91.3	93.3	2.0	0.68	3
APSD1429	64.7	66.7	2.0	0.86	1
APSD1429	92.7	94.7	2.0	0.70	20
APSD1429	148.2	150.2	2.0	0.64	6
APSD1436	0.0	11.4	11.4	1.15	1
APSD1436	27.4	31.5	4.1	0.91	3
APSD1436	38.6	40.6	2.0	0.70	2
APSD1436	65.4	74.5	9.1	1.37	2
APSD1436	78.9	81.8	2.9	0.62	1
APSD1436	115.0	117.6	2.6	1.32	3
APSD1438	99.6	105.8	6.2	0.69	2
APSD1438	118.0	120.0	2.0	0.85	7
APSD1440	79.0	82.0	3.0	1.13	7
APSD1440	85.5	110.8	25.3	0.70	3
APSD1440	114.0	118.0	4.0	0.80	3
APSD1440	120.3	122.4	2.1	1.62	7
APSD1443	0.0	7.5	7.5	1.57	1
APSD1443	26.5	50.3	23.8	3.80	0
APSD1443	52.4	97.3	44.9	1.82	3
APSD1443	134.0	138.0	4.0	1.04	6
APSD1443	149.5	151.5	2.0	0.61	1
APSD1446	166.0	177.0	11.0	0.58	2
APSD1455	0.0	17.5	17.5	1.14	1
APSD1455	33.1	37.0	3.9	0.63	1
APSD1455	120.0	124.4	4.4	0.99	5

Table A4: Uluala Hulu Diamond Drilling Locations and Results

Hole Number	Easting (m)	Northing (m)	RL (m)	Final depth (m)	Azimuth (in degrees)	Inclination (in degrees from horizontal)
APSD1437	508252.9	171364.6	637.9	167.3	90	-55
APSD1439	508184.5	171364.7	671.0	158.6	90	-55
APSD1444	508182.0	171318.0	690.4	235.4	90	-55
APSD1445	508247.9	171417.2	647.5	142.5	90	-55
APSD1447	508024.0	171560.0	690.0	122.9	90	-20
APSD1448	508240.0	171442.1	631.5	103.5	90	-50
APSD1450	508253.5	171364.9	638.0	191.0	90	-70
APSD1452	508024.0	171560.0	690.0	190.6	90	-50
APSD1453	508254.1	171344.1	635.5	180.1	80	-53
APSD1456	508216.0	171200.0	674.0	185.9	270	-40
APSD1457	508030.0	171305.0	775.0	193.5	90	-55
APSD1459	508210.0	171150.0	663.5	168.1	270	-25
APSD1460	508034.0	171142.0	700.0	142.7	270	-46
APSD1461	508216.0	171200.0	674.0	150.0	270	-5

Collar locations

Drill hole Assay Intercept

Hole Number	From depth (m)	To depth (m)	Interval (m)	Au_g/t	Ag_g/t
APSD1437	73.9	82.2	8.3	0.74	8
APSD1437	87.2	95.2	8.0	0.59	4
APSD1437	109.2	118.2	9.0	0.61	6
APSD1437	129.2	132.2	3.0	0.97	15
APSD1437	136.2	144.5	8.3	0.76	4
APSD1439	119.2	122.2	3.0	0.82	10
APSD1439	128.2	136.2	8.0	0.77	6
APSD1439	146.2	158.6	12.4	1.49	16
APSD1444	88.8	97.3	8.5	0.56	1
APSD1444	105.0	107.1	2.1	0.92	2
APSD1444	140.0	146	6	0.72	4
APSD1444	159.4	162.9	3.5	1.18	12
APSD1444	166.2	181.5	15.3	0.89	6
APSD1445	56.0	127.8	71.8	3.3	35
APSD1447	38.0	41.5	3.5	0.71	2
APSD1447	51.5	61.0	9.5	1.66	4
APSD1447	69.0	73.0	4.0	0.71	24
APSD1447	84.0	90.0	6.0	0.69	8
APSD1447	96.0	111.0	15.0	0.66	8
APSD1447	118.0	122.9	4.9	0.84	7
APSD1448	16.5	25.5	9.0	0.76	12
APSD1448	30.5	33.5	3.0	1.59	10
APSD1448	36.5	46.0	9.5	1.91	11
APSD1450	69.0	71.0	2.0	0.63	9
APSD1450	77.0	93.0	16.0	0.75	6

Hole Number	From depth (m)	To depth (m)	Interval (m)	Au_g/t	Ag_g/t
APSD1450	102.0	107.0	5.0	0.6	3
APSD1450	113.0	122.0	9.0	0.58	5
APSD1450	127.0	129.0	2.0	1.02	10
APSD1452	46.0	63.5	17.5	0.84	2
APSD1452	85.5	98.5	13.0	0.79	11
APSD1452	149.0	151.0	2.0	0.81	3
APSD1452	155.0	157.0	2.0	1.80	4
APSD1453	38.0	41.0	3.0	2.17	6
APSD1453	86.0	91.0	5.0	0.75	6
APSD1453	140.0	144.0	4.0	0.75	8
APSD1453	147.0	153.0	6.0	0.7	1
APSD1456	12.0	31.2	19.2	1.2	0
APSD1456	35.0	37.4	2.4	0.8	0
APSD1456	41.5	47.2	5.7	0.55	0
APSD1456	54.0	56.0	2.0	0.56	1
APSD1456	96.0	106.0	10.0	0.64	1
APSD1456	111.5	115.0	3.5	0.91	0
APSD1457	53.0	56.0	3.0	0.7	0
APSD1457	63.0	67.0	4.0	0.54	0
APSD1457	147.8	154.0	6.2	0.73	0
APSD1459	3.9	12.5	8.6	0.81	0
APSD1459	16.5	21.4	4.9	0.77	0
APSD1459	25.4	45.1	19.7	1.41	0
APSD1459	50.1	62.0	11.9	0.91	0
APSD1459	80.0	91.7	11.7	0.55	2
APSD1460	28.0	30.0	2.0	0.61	1
APSD1460	105.0	107.0	2.0	0.52	4
APSD1461	34.1	39.2	5.1	0.68	0
APSD1461	112.1	134.1	22.0	0.67	0

Trench	S	Start Point		Fi	nish Point	
Number	Easting (m)	Northing (m)	RL (m)	Easting	Northing	RL
TUA-01	507449.1	169858.2	806.1	507479.9	169865.7	779.3
TUA-02	507332.1	169801.9	817.0	507287.0	169792.0	796.2
TUA-03	507376.8	169712.7	753.1	507439.6	169718.0	743.2
TUA-04	507216.8	169509.2	744.7	507269.0	169540.0	760.0
TUA-05	507259.0	169733.3	791.7	507309.9	169733.4	800.4
TUA-06	507313.5	169456.7	715.7	507280.6	169456.9	714.2
TUA-07	507180.1	169395.0	726.3	507227.7	169397.2	719.5
TUA-08	507129.3	169311.7	693.7	507165.2	169308.4	670.5
TUA-09	507229.2	169397.4	719.5	507235.2	169296.3	695.4
TUA-10	507117.7	169274.8	662.6	507156.5	169258.9	665.3
TUA-11	507243.5	169187.2	611.6	507252.5	169209.9	614.9
TUA-12A	507134.3	169077.0	493.4	507151.4	169081.9	505.7
TUA-12B	507150.4	169092.5	518.3	507155.1	169097.8	520.6
TUA-13	507271.5	169079.7	597.2	507319.6	169104.7	601.1
TUA-14	507355.8	169048.2	582.5	507378.2	169065.6	577.1
TUA-15	507157.7	168958.6	458.7	507198.5	168946.1	468.6
TUA-16A	507297.8	168975.8	485.7	507311.9	168958.7	490.2
TUA-16B	507316.1	168953.2	476.5	507347.7	168947.1	473.8
TUA-17	507621.2	170073.9	792.7	507664.9	170054.1	802.4
TUA-18	507734.3	170202.6	730.5	507758.2	170198.3	739.6
TUA-19	507785.6	170382.1	689.9	507814.8	170397.3	688.9
TUA-20	507143.5	169387.8	689.9	507092.7	169371.4	699.7
TUA-21	507022.4	169269.6	650.4	507070.0	169284.5	653.8
TUA-22A	507096.9	169263.7	619.8	507120.5	169250.8	620.9
TUA-22B	507119.4	169239.4	607.1	507143.2	169239.2	604.7
TUA-23	507332.0	168991.5	564.6	507348.0	168999.0	568.0
TUA-24	507689.2	170072.3	786.7	507688.0	170091.1	786.3
TUA-25	508017.6	170229.9	702.9	508020.8	170236.2	699.2
TUA-26A	507714.6	170100.1	789.6	507723.1	170106.4	794.7
TUA-26B	507733.2	170115.1	769.5	507743.5	170139.4	767.0
TUA-27	508109.5	170181.7	716.2	508108.6	170186.9	715.8
TUA-28A	508113.1	170292.1	689.8	508110.7	170298.7	690.4
TUA-28B	508111.4	170297.1	690.4	508098.1	170294.5	691.8
TUA-29A	508100.9	170517.8	619.0	508104.2	170526.1	617.2
TUA-29B	508108.4	170529.4	616.9	508108.7	170532.2	615.9
TUA-30	508178.4	170359.6	658.1	508210.8	170354.0	648.7

Table A5: Tor Uluala Trench Locations and Results

Assay Re	Juno	Inte	section		High	arade w	ithin inters	ection	Remarks
No	From	То	Length	Au (g/t)	From	То	Length	Au (g/t)	Kennarka
TUA-01	15.0	18.0	3.0	1.17					No Significant results
TUA-02									No Significant results
TUA-03	59.0	61.0	2.0	4.17					
TUA-04	0	65.0	65.0	1.24	57.0	65.0	8.0	2.69	
TUA-05									No Significant results
TUA-06									No Significant results
TUA-07	0	45.5	45.5	1.51	9.0	17.0	8.0	3.07	
TUA-08	1.0	42.0	41.0	1.76	27	41.0	14.0	2.81	
TUA-09									No Significant results
TUA-10	0	8.0	8.0	1.44	0	2.0	2.0	3.40	
TUA-11	0	26.0	26.0	1.83	14.0	25.0	11.0	2.61	
TUA-12A									No Significant results
TUA-12B									No Significant results
TUA-13									No Significant results
TUA-14									No Significant results
TUA-15	39	50.0	11.0	1.96	42.0	47.0	5.0	3.34	
TUA-16A	2	6.0	4.0	1.17					
	16	25.0	9.0	0.78					
TUA-16B									No Significant results
TUA-17	0	9.0	9.0	0.82	16.0	22.0	6.0	1.36	
	13.0	35.0	22.0	0.97					
TUA-18									No Significant results
TUA-19									No Significant results
TUA-20	22.0	42.0	20.0	1.56	22.0	30.0	8.0	2.26	
TUA-21	32.0	59.0	27.0	1.22	55.0	59.0	4.0	4.45	
TUA-22A	0	27.0	27.0	1.28	7.0	10.0	3.0	2.76	
	33.0	37.0	4.0	0.88					
TUA-22B									No Significant results
TUA-23	0	23.0	23.0	4.05	9.0	21.0	12.0	5.73	
TUA-24	0	21.0	21.0	2.63	0	11.0	11.0	3.22	
TUA-25	0	2.0	2.0	1.41					
	5	10.0	5.0	1.05	7.0	9.0	2.0	1.46	
TUA-26A	0	11.0	11.0	0.77	7.0	10.0	3.0	1.05	
TUA-26B	0	6.0	6.0	1.01	2.0	4.0	2.0	1.82	
TUA-27									No Significant results
TUA-28A	0	5.0	5.0	3.27	2	5.0	3.0	5.02	
TUA-28B	0	11.0	11.0	6.36	5.0	10.0	5.0	8.17	
TUA-29A	2	11.0	9.0	0.95	4.0	6.0	2.0	1.53	
TUA-29B	0	4.0	4.0	0.85					
TUA-30	0	33.0	33.0	13.49	18.0	32.0	14.0	29.2	

Table A6: Tor Uluala Diamond Drilling Locations and Results

Collar						
Hole Number	Easting (m)	Northing (m)	RL (m)	Final depth (m)	Azimuth (in degrees)	Inclination (in degrees from horizontal)
APSD1435	506986.0	169158.0	568.0	76.8	100	-65
APSD1462	508169.0	170277.0	641.0	162.8	260	-15
APSD1466	508169.0	170277.0	641.0	176.0	260	-45

Collar

Drill hole Assay Intercept

Hole Number	From depth (m)	To depth (m)	Interval (m)	Au_g/t	Ag_g/t
APSD1435	48.0	51.0	3.0	0.57	15
APSD1435	69.0	72.0	3.0	0.59	7
APSD1462	59.0	77.1	18.1	1.41	8
APSD1466	75.0	85.3	10.3	1.26	5
APSD1466	97.6	100.6	3.0	1.08	2

Appendix 2: JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling.	Samples referred to in this report are diamond drill samples, trench/channel samples or rock samples. Diamond drilling is
techniques		generally accepted as the highest quality sample possible for non-bulk sample mineral exploration. Trench/channel samples
		are representative of intersections at the surface but are regarded as lesser quality than diamond drilling. Trenches referred to
		in this report were channel sampled using a diamond blade rock saw to cut a channel of consistent width. The rock within this
		channel was removed to a consistent depth using a hammer and chisel.
	Include reference to measures taken to ensure sample	Diamond drill core was marked with sampling intervals by geologists according to geological boundaries and pre-determined
	representivity and the appropriate calibration of any	minimum and maximum sampling lengths. Trench/channel samples were sampled at a consistent depth and size without bias.
	measurement tools or systems used.	All samples are taken at 2-5kg in weight where possible, sealed in plastic bags and then placed in calico bags with waterproof
		tags to prevent sample contamination. Calibration of assay systems is done by the certified analytical laboratory.
	Aspects of the determination of mineralisation that are	Half-core diamond drill core samples of approximately 4-5kg, were pulverised to produce 50g flux fused charge for fire assay.
	Material to the Public Report.	
Drilling	Drill type (e.g. core, reverse circulation, open-hole	All the drilling reported in this document is from diamond core drilling. The majority of core at Purnama has been HQ size, with
techniques	hammer, rotary air blast, auger, Bangka, sonic, etc.) and	lesser PQ from surface to 100m depth and rarely NQ, where ground conditions have required core reduction. All drilling is triple
	details (e.g. core diameter, triple or standard tube, depth of	tube to minimise sample disturbance.
	diamond tails, face-sampling bit or other type, whether	
	core is oriented and if so, by what method, etc.).	Until recently drilling has been conducted only with heli-portable rigs. As mining in the Purnama Open Pit progressed, an
		increasing number of drill sites were placed next to mining access roads.
		Where appropriate, a down hole core orientation tool is used to gather detailed structural information. The tool used is an Asahi
		Orishot Procore orientation device. PQ, HQ and NQ sizes are kept on site.

Criteria	JORC Code explanation	Commentary					
Drill sample	Method of recording and assessing core and chip sample	Core recovery is measured during geotechnical logging by comparing the length of recovered core versus the drill run. Dril					
recovery	recoveries and results assessed.	sample recovery at Martabe is dependent on lithology, alteration type and structure. Overall the drill recovery has been very good. The table below shows historical averages for drill recovery in different lithologies for the Purnama deposit.					
		Lithology	No of Data	Average recovery (%)			
		Soil	2778	78			
		Fault	732	92			
		Quartz	7360	94			
		Volcanic Hornblende Andesite	8559	94			
		Clay Breccia	7381	93			
		Silica Breccia	7643	92			
		Volcanic Andesite	15344	95			
		Sediments	2437	95			
		Volcanic Basaltic Andesite	2223	94			
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	drilling. This suggests that the	nere is a no signific	ant if any loss of gold from	of gold from the fine fractions during sampling and fine fractions. In the event there is significant sample t the stage of Resource Estimation.		
Logging	Whether core and chip samples have been geologically	All diamond drill holes we	re logged for geo	logy and geotechnical fea	atures. Geotechnical logging was done by trained		
	and geotechnically logged to a level of detail to support	technicians under the supervision of geologists. Geotechnical logging includes measurements of drill run length, core recovery,					
	appropriate Mineral Resource estimation, mining studies	RQD, Fracture count and fracture characteristics.					
				63.			
	and metallurgical studies.	Geological logging was dor	e by geologists on		ts, which were transcribed into the GBIS data entry		
	and metallurgical studies.			hand written logging shee	ts, which were transcribed into the GBIS data entry markup interval, lithology, structure, breccia type,		
	and metallurgical studies.		istics include (but	hand written logging shee are not limited to) assay			
	and metallurgical studies.	platform. Logged character alteration type and intensity	istics include (but , and mineralisatior	hand written logging shee are not limited to) assay h style(s) and intensity.			

Criteria	JORC Code explanation	Commentary
		logging geologists were involved in the interpretation process, ensuring that there was consistency between logging and interpretation.
		All core was digitally photographed after logging and before cutting and sampling.
	Whether logging is qualitative or quantitative in nature.	Visual geological and alteration logs are taken by a dedicated core team of experienced geologists using a standardised
	Core (or costean, channel, etc.) photography.	logging scheme. Although visual logs are inherently qualitative, additional quantitative measurements of core are also taken
		routinely and are included in the interpretation of logged data. These include RQD measurements, SWIR analysis, and
		magnetic susceptibility measurements. These are all measured on a metre by metre basis.
	The total length and percentage of the relevant	A total of 48 holes were drilled in the period 1/06/2014 - 1/10/2014, for 8,127.9m of drillcore. The average hole depth for the
	intersections logged.	period was 168.5m with a maximum depth of 383.6m. To date, the Martabe deposit has seen over 250,000m of diamond core
		drilled from 1,666 holes. The maximum hole depth is 833.0m with an average of 148.2m. All of these holes have been logged,
		and only rarely (such as from geotechnical holes in barren volcanics or sediments outside the mineralised zone) were samples
		not sent for assay.
Sub-sampling	If core, whether cut or sawn and whether quarter, half or all	Core was cut into halves using a diamond blade core- saw, with one half sampled and one half retained. Quarter core samples
techniques and	core taken.	were only taken on rare occasions (e.g. for metallurgical sampling).
sample	If non-core, whether riffled, tube sampled, rotary split, etc.	N/A
preparation	and whether sampled wet or dry.	
	For all sample types, the nature, quality and	Samples are placed into sealed plastic bags with an internal tag, and then into numbered calico bags for delivery to the PT
	appropriateness of the sample preparation technique.	Intertek Utama sample preparation facility at Padang. The process for sample preparation is as follows:
		Drying
		• Samples are placed onto aluminum trays and dried at 65°C.
		• If samples are specified for low temperature drying or if Hg assay is requested then samples are dried at low
		temperature of < 65°C.
		Crushing
		Crush samples using a Jaw Crusher.

Criteria	JORC Code explanation	Commentary
		Jaw plates are cleaned after each sampling routine using a gravel wash.
		Jaw crusher size result < 5mm.
		Pulvurising
		Use LM5, RM2000 and LM2 pulverize techniques employed depending on sample size.
		• Samples pulverised to 200# (200# > 95%).
		Sizing tests performed 1/20 on each pulverize.
		Bowls cleaned between each sample routine using a gravel wash.
		Rolling/Mixing
		• The pulverized sample is then rolled/mixed in a rubber mat for a minimum of 20 times.
		Rubber mat cleaned thoroughly between samples.
		Splitting
		• Riffle splitter used to split an analytical pulp sample of approximately 250g to be sent to Jakarta for analysis.
		Residue and Coarse rejects placed in a plastic bag and return to G-Resources.
		Thorough reporting is carried out throughout the process and G-Resources deems the sample preparation techniques
		appropriate and of sufficient quality.
	Quality control procedures adopted for all sub-sampling	On average core was sampled at approximately 1m intervals through mineralised zones and 2-4m intervals through suspected
	stages to maximise representivity of samples.	zones of mineralised waste. Core was cut in half with a diamond saw, with half sampled and half retained for reference.
	Measures taken to ensure that the sampling is	Duplicate sampling of crushed was done by the laboratory with splits taken for their QA/QC process according to their
	representative of the in situ material collected, including for	procedures. The company takes duplicates on a campaign basis: these being either coarse reject or pulp sub-samples.
	instance results for field duplicate/second-half sampling.	
	Whether sample sizes are appropriate to the grain size of	Studies of the Purnama deposit have demonstrated the fineness of gold observed in samples from Martabe. These show that
	the material being sampled.	approximately 73% of gold particles in samples are in the <5µm fraction, with a further 26% in the 5-50µm fraction, and less
		than 1% of gold particles exceeding the 50µm size fraction. Having said this, sample sizes are cautiously large; to ensure that
		samples remain representative and any nugget effects of gold are minimised.

JORC Code explanation

Criteria

Commentary

below:

Quality of assay	The nature, quality and appropriateness of the assaying
data and	and laboratory procedures used and whether the

laboratory tests technique is considered partial or total.

Assaying was conducted at the PT Intertek Utama facility in Jakarta. The standard assaying suite used is shown in the table

Lab_ Method Method_ID Samples Element LDL UDL Fire Assays FA51 0.01ppn 50ppn Au Gravimetric Au >20ppm FA12 3ppm 10% 10% AAS + Acid Digest GA02 1ppm Ag 5% AAS + 3Acid Digest GA30 0.019 Ag >100ppm Priority 1 10% AAS + Acid Digest GA02 2ppm Cu Elements Resources 5% GA30 0.01% Cu>10,000 AAS + 3Acid Digest Development 10% X-Ray XR01 1ppm DRILL CORE Δe 10% As >10,000 X-Ray XR01 0.019 10% LECO - SCIS SCIS 0.019 SxS AuCN Cyanide Leachable CN05 0.1ppm 10% Additional 10% AgCN Cyanide Leachable CN06 1ppm Elements **CN06** 10% CuCN Cyanide Leachable 2ppm

Note SxS = sulphide sulphur

A suite of additional elements was assayed by ICP. A four acid (HCL, HNO3, HCLO4, HF) digest was used to ensure liberation

of elements locked in silicate matrices. The full table of assayed elements with their associated detection limits is presented

below:

Element	LDL	Element	LDL	Element	LDL	Element	LDL	Method ID	Lab Method
Ag	(0.5ppm)	AI	(0.01%)	As	(5ppm)	Ва	(2ppm)	IC50	ICP + 4 acid digest
Bi	(5ppm)	Ca	(0.01%)	Cd	(1ppm)	Со	(2ppm)		
Cr	(2ppm)	Cu	(2ppm)	Fe	(0.01%)	Ga	(10ppm)		
К	(0.01%)	La	(1ppm)	Li	(1ppm)	Mg	(0.01%)		
Mn	(2ppm)	Мо	(1ppm)	Na	(0.01%)	Nb	(5ppm)		
Ni	(5ppm)	Pb	(2ppm)	Sb	(5ppm)	Sc	(2ppm)		
Sn	(10ppm)	Sr	(1ppm)	S	(50ppm)	Та	(5ppm)		
Te	(10ppm)	Ti	(0.01%)	V	(1ppm)	W	(10ppm)		
Y	(1ppm)	Zn	(2ppm)	Zr	(5ppm)				

Criteria	JORC Code explanation	Commentary
	For geophysical tools, spectrometers, handheld XRF	An ASD Terraspec 3 VIR/SWIR spectrometer was acquired in early 2013. Routine sampling of core has been conducted since
	instruments, etc., the parameters used in determining the	and used for affirmation of alteration assemblages used in deposit scale modelling. Sample acquisition is set to take an average
	analysis including instrument make and model, reading	of 50 samples per reading, 100 sample average for white reference calibration. White reference calibration is performed once in
	times, calibrations factors applied and their derivation, etc.	every 20 readings taken on a standard spectralon panel obtained from ASD. Interpretation of spectra uses the TSG software for
		initial interpretation, but 100% of readings taken are visually checked and corrected by a trained operator. Drillcore
		measurements are made on a per-metre basis on all drillcore.
		Two Terraplus KT-10 magnetic susceptibility meters are in use, and routine collection of data from drillcore is employed. The
		machines are factory calibrated in accordance with the manufacturers guidelines. Sample measurements are taken on a per
		metre basis and interpreted both on site, and with verification from outside geophysical contractors. Standard collection SOPs
		are used to eliminate outside influence on magnetic susceptibility readings.
		Other direct measurement geophysical tools have been used on site, to compare drill results against predicted geophysical
		models, however these have been on a campaign basis and wholly operated by outside geophysical contractors.
	Nature of quality control procedures adopted (e.g.	Quality assurance was conducted in these ways:
	standards, blanks, duplicates, external laboratory checks)	• An ongoing QA/QC program was conducted using blind samples which included blank samples and certified
	and whether acceptable levels of accuracy (i.e. lack of	reference standards.
	bias) and precision have been established.	Only certified laboratories were used.
		Assay laboratories used for Resource Estimation work were audited by PTAR every two years.QA/QC Program.
		PTAR has a suite of certified and non-certified standards ("Standards") covering a range of grades and elements (including Au,
		Ag and Cu but not sulphide sulphur). Certified standards, sourced from Geostat Pty Ltd and Ore Research and Exploration
		(OREAS) Pty Ltd, were submitted as part of this campaign.
		Either a Standard or Blank was inserted at the rate of 1 in every 20 samples. Overall PT Intertek Utama performed very well
		with these standards, with the few anomalies observed considered likely due to mislabeling or data mismatching errors. These
		were corrected after receipt of the final assay results (usually within six weeks of sample submission).
Verification of	The verification of significant intersections by either	Significant intersections quoted in this report were verified by Mr. Janjan Hertijana, MAusIMM and full time employee of the
sampling and	independent or alternative company personnel.	Company.

Criteria	JORC Code explanation	Commentary
assaying	The use of twinned holes.	A large number of 'scissor" intersections are available which provide short range validation of geological models and
		geostatistical parameters. Twinned holes have been drilled in the past to collect samples for metallurgical test work.
	Documentation of primary data, data entry procedures,	All sample collection data, geological logging, borehole location and laboratory analysis results are retained and archived. All
	data verification, data storage (physical and electronic)	data is backed up with both a daily full SQL backup, and a weekly compilation. Monthly downloads to DVD are stored in a
	protocols.	separate location to database hardware.
		Data entry and QA/QC are managed in-house by an experienced database manager.
	Discuss any adjustment to assay data.	No adjustments to assay data are made.
Location of data	Accuracy and quality of surveys used to locate drill holes	Diamond drill hole collar locations were located through Total Station. Most surveys were completed by a contracted licensed
points	(collar and down-hole surveys), trenches, mine workings	surveyor. Later surveys have been undertaken by a PTAR mine surveyor in some cases. Collar survey positions were validated
	and other locations used in Mineral Resource estimation.	by senior geologists before being entered into the SQL database.
		Down hole measurements have been conducted exclusively with electronic survey tools, consisting of a magnetic compass and
		inclinometer with electronic reading. Surveys were taken at 20m below the collar, and then at 50 metre depths down the hole
		(i.e. 50m, 100m 150m and so on until end of hole).
	Specification of the grid system used.	The grid system employed is UTM (WGS84) Zone 47N.
	Quality and adequacy of topographic control.	A LIDAR survey was conducted by PT Surtech Utama Indonesia in June 2010. The survey covered an area of 13,600 ha
		surrounding the Martabe project area. Data capture was at nominal point density of more than 2 points per square metre. The
		Lidar survey accuracy was measured with post processed kinematics GPS survey using approximately 30 points at one
		location. The error between the two methods was found to be within 5cm. Processed data was produced to a grid at 0.15cm
		spacing. The data was presented to PTAR as ASCII files suitable for creation of a digital terrain model, and as rectified,
		georeferenced orthophotos.
		Lidar does not completely penetrate vegetation and this can lead to elevation inaccuracies in densely forested areas, such as
		the original surface of the Purnama deposit. The LIDAR surface may have greater elevation than the actual ground surface (up
		to several metres in places), however this accuracy is adequate for the purpose of constructing Mineral Resource Estimates.
Data spacing and	Data spacing for reporting of Exploration Results.	Drill holes were completed on nominal E-W sections, spaced at the following intervals in the vertical and horizontal planes:

Criteria	JORC Code explanation	Commentary
distribution		Measured Resources: 25 metre spacing or less.
		Indicated Resources: 25 metre by 50 metre,
		Inferred Resources: 50 metre by 50 metre.
	Whether the data spacing and distribution is sufficient to	The data spacing and distribution is sufficient to establish geological and grade continuity. This has been established by
	establish the degree of geological and grade continuity	variography and by comparing the results of drilling against close spaced grade control drilling in the Purnama Deposit.
	appropriate for the Mineral Resource and Ore Reserve	
	estimation procedure(s) and classifications applied.	
	Whether sample compositing has been applied.	Sample compositing has not been applied before the process of Resource Estimation, where sample results are
		mathematically composited into appropriate lengths for the element being estimated.
Orientation of	Whether the orientation of sampling achieves unbiased	Sample orientation is varied where possible to nearly perpendicular to the strike of mineralisation. Steep topography means that
data in relation to	sampling of possible structures and the extent to which	sampling may not be perpendicular to the dip of mineralisation. Scissor holes and more recently horizontal capable drill rigs
geological	this is known, considering the deposit type.	have been used to overcome sampling bias.
structure	If the relationship between the drilling orientation and the	Where possible, drilling has attempted to intersect structures as close to normal to the structures strike extension as possible.
	orientation of key mineralised structures is considered to	It is not considered that bias has been introduced by this practice.
	have introduced a sampling bias, this should be assessed	
	and reported if material.	
Sample security	The measures taken to ensure sample security.	Sample security was controlled through supervision of the diamond samples on the drill rigs, security controls in the core shed,
		and through controls on transportation of samples to a commercial assay preparation area off-site. In 2011, security staff at the
		Martabe Gold Mine completed a review of security related to exploration sample handling. This review did not find significant
		issues in the security arrangements of core handling.
Audits or reviews	The results of any audits or reviews of sampling	Reviews of the exploration program (including sampling techniques and data) were held as follows:
	techniques and data.	• During and after the estimation process: internal reviews of the geological modelling and estimation processes were
		held on a regular basis.
		• Independent consultants in specialist areas provided advice as appropriate (for example QA/QC evaluation prior to

Criteria	JORC Code explanation	Commentary
		resource estimation). The results were documented as minutes of meetings and consulting reports.
		• Every two years: an independent, expert review of the systems and processes relating to the Exploration programme
		and Mineral Resource Estimation Process were conducted.
		The last such review was completed in April 2013 by an independent consultant. The review consisted of 5 days onsite at the
		Martabe Gold Mine, where the consultant examined aspects of the operation dealing with exploration, geological interpretation,
		sample handling, and exploration staff skills and competency. Areas for improvement were noted regarding some ongoing
		operational aspects of the resource development program. These have been addressed and do not affect the issue or
		underlying quality of this report.
Mineral tenement	• Type, reference name/number, location and	The Martabe Gold Mine is located in the Martabe Contract of Work ("CoW") area. This "Generation 6" CoW was signed in 1997
and land tenure	ownership including agreements or material issues	and provides for a minimum 30 years tenure after production has commenced.
status	with third parties such as joint ventures, partnerships,	The Martabe Gold Mine was fully permitted at the time of writing. Under Indonesian laws this includes water discharge permits
	overriding royalties, native title interests, historical	for treated mine runoff and process waters, rent use permit of forest and environment permit for exploration activities, various
	sites, wilderness or national park and environmental	environmental, operation and production approvals, and gold and silver bullion export permits amongst other permits and
	settings.	approvals.
	• The security of the tenure held at the time of reporting	
	along with any known impediments to obtaining a	
	licence to operate in the area.	
Exploration done	Acknowledgment and appraisal of exploration by other	The Martabe deposits were discovered in 1997-98 during a regional reconnaissance exploration program conducted by a joint
by other parties	parties.	venture between Normandy and Anglo Gold Corporation. A bulk leach extractable gold (BLEG) stream sediment survey located
		the Martabe cluster of deposits. Three deposits were initially identified, including the Purnama deposit.
		Surface exploration work included mapping, rock and soil sampling. Drilling commenced in October 1998 and the potential of
		the Purnama Deposit was quickly recognised. Multiple phases of exploration up to delineation drilling were continued
		throughout several ownership changes. A high level of continuity and work quality has been maintained over the project life.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of	The general geology of the Martabe Deposits Martabe Region and the district surrounding Martabe is well described by Harlan
	mineralisation.	et al (2005) and Supoto et al (2003).
Drill hole	• A summary of all information material to the	Refer to Appendix 1 of this report for details of all drilling relevant to these exploration results. All new significant drilling results
Information	understanding of the exploration results including a	for the period of 1 June 2014 to 1 October 2014 within the area under discussion are supplied in this Appendix.
	tabulation of the following information for all Material	
	drill holes:	
	$\circ~$ easting and northing of the drill hole collar	
	$\circ~$ elevation or RL (Reduced Level – elevation above	
	sea level in metres) of the drill hole collar	
	$\circ~$ dip and azimuth of the hole	
	$\circ~$ down hole length and interception depth	
	o hole length	
Data aggregation	In reporting Exploration Results, weighting averaging	Refer to Appendix 1 for details.
methods	techniques, maximum and/or minimum grade truncations	
	(e.g. cutting of high grades) and cut-off grades are usually	
	Material and should be stated.	
	Where aggregate intercepts incorporate short lengths of	Refer to Appendix 1 for details.
	high grade results and longer lengths of low grade results,	
	the procedure used for such aggregation should be stated	
	and some typical examples of such aggregations should	
	be shown in detail.	
	The assumptions used for any reporting of metal	Metal equivalent values are not reported.
	equivalent values should be clearly stated.	

Criteria	JORC Code explanation	Commentary
Relationship	These relationships are particularly important in the	Figures in the main text explain the geometry between drill holes and the orientation of mineralisation. All figures reported are
between	reporting of Exploration Results. If the geometry of the	down hole and not true widths, as explicitly stated in Appendix 1.
mineralisation	mineralisation with respect to the drill hole angle is known,	
widths and	its nature should be reported. If it is not known and only the	
intercept lengths	down hole lengths are reported, there should be a clear	
	statement to this effect (e.g. 'down hole length, true width	
	not known').	
Diagrams	Appropriate maps and sections (with scales) and	Refer to Figures in the main text.
	tabulations of intercepts should be included for any	
	significant discovery being reported. These should	
	include, but not be limited to a plan view of drill hole collar	
	locations and appropriate sectional views.	
Balanced	Where comprehensive reporting of all Exploration Results	All material drill intersections are reported in Appendix 1 for the areas under discussion in this report.
reporting	is not practicable, representative reporting of both low and	
	high grades and/or widths should be practiced to avoid	
	misleading reporting of Exploration Results.	
Other substantive	Other exploration data, if meaningful and material, should	Details are reported in the main text.
exploration data	be reported including (but not limited to): geological	
	observations; geophysical survey results; geochemical	
	survey results; bulk samples – size and method of	
	treatment; metallurgical test results; bulk density,	
	groundwater, geotechnical and rock characteristics;	
	potential deleterious or contaminating substances.	

Criteria	JORC Code explanation	Commentary
Further work	The nature and scale of planned further work (e.g. tests	Details are reported in the main text.
	for lateral extensions or depth extensions or large-scale	
	step-out drilling).	
	Diagrams clearly highlighting the areas of possible	Details are reported in the main text.
	extensions, including the main geological interpretations	
	and future drilling areas, provided this information is not	
	commercially sensitive.	